Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

L1 mono- and polyclonal antibodies modify cell migration in early postnatal mouse cerebellum

Abstract

A major event of nervous system development1 is the migration of granule cell neurones, during the early postnatal development of the cerebellar cortex, from their germinating zone in the external granular layer to then final location in the internal granular layer. During migration, many granule cells are seen in direct cell-surface contact with processes of Bergmann glia, a subclass of astrocytes2. In the neurological mutant mouse weaver, however, migration of granule cells is impaired, probably due to a deficit in cell–cell interactions3–5. To gain insight into the cellular and molecular mechanisms involved in granule cell migration, we have used a modification of an in vitro assay system, previously described by Moonen et al.6, which displays migratory behaviour in small tissue explants during several days of suspension culture. The aim of this study was to investigate the process of granule cell migration by using antibodies directed against cell-surface components of developing neural cells. We report here that migration of 3H-thymidine-labelled granule cell neurones can be modified by Fab fragments of both mono- and polyclonal L1 antibodies, but not by Fab fragments of polyclonal antibodies prepared against mouse liver membranes, which also react with cerebellar cell surfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cowan, W. M. Life Sci. Res. Rep. 24, 7–24 (1982).

    Google Scholar 

  2. Rakic, P. Life Sci. Res. Rep. 20, 25–38 (1982).

    Google Scholar 

  3. Rakic, P. & Sidman, R. L. J. comp. Neurol. 152, 103–132 (1973).

    Article  CAS  Google Scholar 

  4. Rakic, P. & Sidman, R. L. J. comp. Neurol. 152, 133–162 (1973).

    Article  CAS  Google Scholar 

  5. Sotelo, C. & Changeux, J.-P. Brain Res. 67, 519–526 (1974).

    Article  CAS  Google Scholar 

  6. Moonen, G., Grau-Wagemans, M. P. & Selak, I. Nature 298, 753–755 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Rathjen, F. G. & Schachner, M. EMBO J. (in the press).

  8. Miale, J. L. & Sidman, R. L. Expl Neurol. 4, 277–296 (1961).

    Article  CAS  Google Scholar 

  9. Goridis, C., Joher, J. A., Hirsch, M. & Schachner, M. J. Neurochem. 31, 531–539 (1978).

    Article  CAS  Google Scholar 

  10. Rohrer, H. & Schachner, M. Neurochemistry 35, 792–803 (1980).

    Article  CAS  Google Scholar 

  11. Jorgensen, O. S., Delouvee, A., Thiery, J.-P. & Edelmann, G. M. FEBS Lett. 111, 39–42 (1980).

    Article  CAS  Google Scholar 

  12. Hirn, M., Pierres, M., Deagostini-Bazin, H., Hirsch, M. & Goridis, C. Brain Res. 214, 433–439 (1981).

    Article  CAS  Google Scholar 

  13. Brackenbury, R., Thiery, M.-P., Rutishauser, U. & Edelman, G. M. J. biol. Chem. 252, 6835–6840 (1977).

    CAS  Google Scholar 

  14. Hoffman, S. et al. J. biol. Chem. 257, 7720–7729 (1982).

    CAS  Google Scholar 

  15. Lemmon, V., Staros, E. B., Perry, H. E. & Gottlieb, D. I. Devl Brain Res. 3, 349–360 (1982).

    Article  CAS  Google Scholar 

  16. Schnitzer, J. & Schachner, M. J. Immun. 1, 457–470 (1981).

    CAS  Google Scholar 

  17. Altman, J. J. comp. Neurol. 163, 427–448 (1975).

    Article  CAS  Google Scholar 

  18. Caviness, V. S. & Rakic, P. A. Rev. Neurosci. 1, 297–326 (1978).

    Article  Google Scholar 

  19. Fischer, G. Neurosci. Lett. 28, 325–329 (1982).

    Article  CAS  Google Scholar 

  20. Goridis, C., Martin, J. & Schachner, M. Brain Res. Bull. 3, 45–52 (1978).

    Article  CAS  Google Scholar 

  21. Willinger, M. & Schachner, M. Devl Biol. 74, 101–117 (1980).

    Article  CAS  Google Scholar 

  22. Fujita, S. J. Cell Biol. 32, 277–287 (1967).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindner, J., Rathjen, F. & Schachner, M. L1 mono- and polyclonal antibodies modify cell migration in early postnatal mouse cerebellum. Nature 305, 427–430 (1983). https://doi.org/10.1038/305427a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/305427a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing