Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Enhanced myogenesis in NCAM-transfected mouse myoblasts

Abstract

THE fusion of mononucleate precursor myoblasts to form the multinucleated skeletal muscle fibre is proceeded by a series of complex cell–cell interactions1–5 but the cell-surface molecules involved in these events have not been characterized. During myogenesis in vivo and in vitro, expression of the neural cell adhesion molecule (NCAM) undergoes an isoform transition that precisely correlates with terminal myoblast differentiation and myotube formation6,7. Altered processing of RNA results in the replacement of the transmembrane NCAM (relative molecular mass, 145,000 (145K)) in proliferating myoblasts by a predominant 125K NCAM form linked to glycosyl phosphatidylinositol in myotubes8,9. We now report that mouse myoblasts transfected to constitutively express the human muscle-specific 125K glycosyl-phosphatidylinositol-linked NCAM isoform more readily fuse to form myotubes. This suggests that NCAM plays a part in myoblast fusion and that the isoform switch may promote this function.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bischoff, R. in Cell Surface Reviews, Membrane Fusion Vol. 5 (eds Poste, G. & Nicholson, G. L.) 127–175 (North-Holland, Oxford, 1978).

    Google Scholar 

  2. Wakelam, M. J. O. Biochem. J. 228, 1–12 (1985).

    Article  CAS  Google Scholar 

  3. Gibraltar, D. & Turner, D. C. Devl Biol. 112, 292–307 (1985).

    Article  Google Scholar 

  4. Knudsen, K. A. J. Cell Biol. 101, 891–897 (1985).

    Article  CAS  Google Scholar 

  5. Pizzey, J. A., Jones, G. E. & Walsh, F. S. J. Cell Biol. 107, 2307–2317 (1988).

    Article  CAS  Google Scholar 

  6. Covault, J., Merlie, J. P., Goridis, C. & Sanes, J. R. J. Cell Biol. 102, 731–739 (1986).

    Article  CAS  Google Scholar 

  7. Moore, S. E., Moore, S. E., Thomson, J., Kirkness, V., Dickson, G. & Walsh, F. S. J. Cell Biol. 105, 1377–1386 (1987).

    Article  CAS  Google Scholar 

  8. Dickson, G. et al. Cell 50, 1119–1130 (1987).

    Article  CAS  Google Scholar 

  9. Thomson, J. et al. Genes Dev. 3, 348–357 (1989).

    Article  Google Scholar 

  10. Knudsen, K. A. & Horwitz, A. F. Devl Biol. 58, 329–338 (1977).

    Article  Google Scholar 

  11. Endo, T. & Nadal-Ginard, B. Cell 49, 515–526 (1987).

    Article  CAS  Google Scholar 

  12. Menko, S. A. & Boettiger, D. Cell 51, 51–57 (1987).

    Article  CAS  Google Scholar 

  13. Rutishauser, U., Grumet, M. & Edelman, G. M. J. Cell Biol. 97, 145–152 (1983).

    Article  CAS  Google Scholar 

  14. Bixby, J. L., Pratt, R. S., Lilien, J. & Reichardt, L. F. Proc. natn. Acad. Sci. U.S.A. 84, 2555–2559 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Rieger, F. et al. J. Cell Biol. 107, 707–719 (1988).

    Article  CAS  Google Scholar 

  16. Landmesser, L., Dahm, L., Schultz, K. & Rutishauser, U. Devl Biol. 130, 645–670 (1988).

    Article  CAS  Google Scholar 

  17. Grumet, G. M., Rutishauser, U. & Edelman, G. M. Nature 295, 693–695 (1982).

    Article  ADS  CAS  Google Scholar 

  18. Knudsen, K. A., Smith, L. & McElwee, S. J. Cell Biol. 109, 1779–1786 (1989).

    Article  CAS  Google Scholar 

  19. Yaffe, D. & Saxel, O. Nature 270, 725–727 (1977).

    Article  ADS  CAS  Google Scholar 

  20. Doherty, P. et al. J. Cell Biol. 109, 789–798 (1989).

    Article  CAS  Google Scholar 

  21. Pizzey, J., Rowett, L. H., Barton, C. H., Dickson, G. & Walsh, F. S. J. Cell Biol. 109, 789–798 (1989).

    Article  Google Scholar 

  22. Walsh, F. S., Dickson, G., Moore, S. E. & Barton, C. H. Nature 339, 516 (1989).

    Article  ADS  CAS  Google Scholar 

  23. Patel, K., Rossell, R. J., Moore, S. E., Walsh, F. S. & Kemshead, J. T. Int. J. Cancer 44, 1062–1068 (1989).

    Article  CAS  Google Scholar 

  24. Fraser, S. E., Murray, B. A., Chuong, C.-M. & Edelman, G. M. Proc. natn. Acad. Sci. U.S.A. 81, 4222–4226 (1984).

    Article  ADS  CAS  Google Scholar 

  25. Edelman, G. M., Murray, B. A., Mege, R.-M., Cunningham, B. A. & Gallin, W. J. Proc. natn. Acad. Sci. U.S.A. 84, 8502–8506 (1987).

    Article  ADS  CAS  Google Scholar 

  26. Massague, J., Cheifetz, S., Endo, T. & Nadal-Ginard, B. Proc. natn. Acac. Sci. U.S.A. 83, 8206–8210 (1986).

    Article  ADS  CAS  Google Scholar 

  27. Lathrop, B. K., Thomas, K. & Fraser, L. J. Cell Biol. 101, 2194–2198 (1985).

    Article  CAS  Google Scholar 

  28. Gower, H. J. et al. Cell 55, 955–964 (1988).

    Article  CAS  Google Scholar 

  29. Sudher, P. et al. Science 244, 1158–1162 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dickson, G., Peck, D., Moore, S. et al. Enhanced myogenesis in NCAM-transfected mouse myoblasts. Nature 344, 348–351 (1990). https://doi.org/10.1038/344348a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/344348a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing