Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Novel potential mitotic motor protein encoded by the fission yeast cut7+ gene

Abstract

THE structure equivalent to higher eukaryotic centrosomes in fission yeast, the nuclear membrane-bound spindle pole body, is inactive during interphase. On transition from G2 to M phase of the cell cycle, the spindle pole body duplicates; the daughter pole bodies seed microtubules which interdigitate to form a short spindle that elongates to span the nucleus at metaphase1–5. We have identified two loci which, when mutated, block spindle formation. The predicted product of one of these genes, cut7+ (ref. 6), contains an amino-terminal domain similar to the kinesin heavy chain head domain7,8, indicating that the cut7+ product could be a spindle motor. The cut7+ gene resembles the Aspergillus nidulans putative spindle motor gene bimC (ref. 9), both in terms of its organization with a homologous amino-terminal head and no obvious heptad repeats and in the morphology of the mutant phenotype. But we find no similarity between the carboxy termini of these genes, suggesting that either the cut7+ gene represents a new class of kinesin genes and that fission yeast may in addition contain a bimC homologue, or that the carboxy termini of these mitotic kinesins are not evolutionary conserved and that the cut7+ gene belongs to a subgroup of bimC-related kinesins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. McCully, E. K. & Robinow, C. F. J. Cell Sci. 9, 475–507 (1971).

    Article  CAS  Google Scholar 

  2. Tanaka, K. & Kanbe, T. J. Cell Sci. 80, 253–268 (1986).

    Article  CAS  Google Scholar 

  3. Kanbe, T., Hiraoka, Y., Tanaka, K. & Yanagida, M. J. Cell Sci. 96, 275–283 (1990).

    Article  CAS  Google Scholar 

  4. Hagan, I. M. & Hyams, J. S. J. Cell Sci. 89, 343–357 (1989).

    Article  Google Scholar 

  5. Hiraoka, Y., Toda, T. & Yanagida, M. Cell 39, 349–358 (1984).

    Article  CAS  Google Scholar 

  6. Hirano, T., Funahashi, S., Uemura, T. & Yanagida, M. EMBO J. 5, 2973–2979 (1986).

    Article  CAS  Google Scholar 

  7. Yang, J. T., Laymon, R. A. & Goldstein, L. S. B. Cell 56, 879–889 (1989)

    Article  CAS  Google Scholar 

  8. Kosik, K. S., Orecchio, L. D., Schnapp, B., Inouye, H. & Neve, R. L. J. biol. Chem. 265, 3278–3283 (1990).

    Article  CAS  Google Scholar 

  9. Enos, A. P. & Morris, N. R. Cell 60, 1019–1027 (1990).

    Article  CAS  Google Scholar 

  10. Uemura, T. & Yanagida, M. EMBO J. 3, 1737–1744 (1984).

    Article  CAS  Google Scholar 

  11. Uzawa, S., Samejima, I., Hirano, T., Tanaka, K. & Yanagida, M. Cell (in the press).

  12. Meluh, P. B. & Rose, M. D. Cell 60, 1029–1041 (1990).

    Article  CAS  Google Scholar 

  13. Endow, S. A., Henikoff, S. & Soler-Niedziela, L. Nature 345, 81–83 (1990).

    Article  ADS  CAS  Google Scholar 

  14. McDonald, H. B. & Goldstein, L. S. B. Cell 61, 991–1000 (1990).

    Article  CAS  Google Scholar 

  15. Hirokawa, N. et al. Cell 56, 867–878 (1989)

    Article  CAS  Google Scholar 

  16. Toda, T., Yamamoto, M. & Yanagida, M. J. Cell Sci. 52, 271–287 (1981).

    Article  CAS  Google Scholar 

  17. Mitchison, J. M. Meth. Cell Physiol. 4, 131–154 (1970).

    Google Scholar 

  18. Kilmartin, J. V., Wright, J. B. & Milstein, C. J. Cell Biol. 93, 576–582 (1982).

    Article  CAS  Google Scholar 

  19. Streiblova, E. & Beran, K. Expl Cell Res. 30, 603–610 (1963).

    Article  Google Scholar 

  20. Beach, D., Durkacz, B. & Nurse, P. Nature 300, 706–709 (1982).

    Article  ADS  CAS  Google Scholar 

  21. Fan, J-B et al. Nucleic Acids Res. 17, 2801–2818 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagan, I., Yanagida, M. Novel potential mitotic motor protein encoded by the fission yeast cut7+ gene. Nature 347, 563–566 (1990). https://doi.org/10.1038/347563a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/347563a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing