Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The microenvironment of the tumour–host interface

Abstract

Throughout the entire process of cancer aetiology, progression and metastasis, the microenvironment of the local host tissue can be an active participant. Invasion occurs within a tumour–host microecology, where stroma and tumour cells exchange enzymes and cytokines that modify the local extracellular matrix, stimulate migration, and promote proliferation and survival. A new class of cancer therapies that targets this pathological communication interface between tumour cells and host cells is currently under development.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microecology of the tumour–host invasion field.
Figure 2: Molecular cross-talk at the invasion front.

References

  1. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Park, C. C., Bissell, M. J. & Barcellos-Hoff, M. H. The influence of the microenvironment on the malignant phenotype. Mol. Med. Today 6, 324–329 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Brown, L. F. et al. Vascular stroma formation in carcinoma in situ, invasive carcinoma, and metastatic carcinoma of the breast. Clin. Cancer Res. 5, 1041–1056 (1999).

    CAS  PubMed  Google Scholar 

  4. Wernert, N. The multiple roles of tumor stroma. Virchows Arch. 430, 433–443 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Aboseif, S., El-Sakka, A., Young, P. & Cunha, G. Mesenchymal reprogramming of adult human epithelial differentiation. Differentiation 65, 113–118 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Vaccariello, M., Javaherian, A., Wang, Y., Fusenig, N. E. & Garlick, J. A. Cell interactions control the fate of malignant keratinocytes in an organitypic model of early neoplasia. J. Invest. Dermatol. 113, 384–391 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Fidler, I. Critical determinants of cancer metastasis: rationale for therapy. Cancer Chemother. Pharmacol. 43, 3–10 (1999).

    Article  Google Scholar 

  8. Nilsson, E. & Skinner, M. K. Cellular interactions that control primordial follicle development and folliculogenesis. J. Soc. Gynecol. Invest. 8, S17–S20 (2001).

  9. Li, Y., Liu, W., Hayward, S. W., Cunha, G. & Baskin, L. S. Plasticity of the urothelial phenotype: effects of gastro-intestinal mesenchyme/stroma and implications for urinary tract reconstruction. Differentiation 66, 126–135 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Olumi, A. F. et al. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 59, 5002–5011 (1999).

    CAS  PubMed  Google Scholar 

  11. Liotta, L. A., Steeg, P. S. & Stetler-Stevension, W. G. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64, 327 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Kohn, E. C. & Liotta, L. A. Molecular insights into cancer invasion: strategies for prevention and intervention. Cancer Res. 55, 1856–1862 (1995).

    CAS  PubMed  Google Scholar 

  13. Stromblad, S. & Cheresh, D. A. Integrins, angiogenesis and vascular cell survival. Chem. Biol. 3, 881–885 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature 407, 249–2571 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Tomakidi, P. et al. Defects in the basement membrane and hemidesmisomes structure correlate with malignant phenotype and stromal interactions in HaCaT-Ras xenografts. Differentiation 64, 263–275 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Guidi, A. J. et al. Vascular permeability factor (vascular endothelial growth factor) expression and angiogenesis in patients with ductal carcinoma in situ of the breast. Cancer 80, 1945–1953 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Lee, A. H., Dublin, E. A. & Bobrow, L. G. Angiogenesis and expression of thymidine phosphorylase by inflammatory and carcinoma cells in ductal carcinoma in situ of the breast. J. Pathol. 187, 285–290 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Gilead, A. & Neeman, M. Dynamic remodeling of the vascular bed precedes tumor growth: MLS ovarian carcinoma spheroids implanted in nude mice. Neoplasia 1, 226–230 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Airola, K. & Fusenig, N. E. Differential stromal regulation of MMP-1 expression in benign and malignant keratinocytes. J. Invest. Dermatol. 116, 85–92 (2000).

    Article  Google Scholar 

  20. Sternlicht, M. D. et al. The stromal proteinase MMP-3/stromelysin-1 promotes mammary carcinogenesis. Cell 98, 137–146 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mehdi, A. et al. Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nature Med. 6, 100–106 (2000).

    Article  CAS  Google Scholar 

  22. Werb, Z. ECM and cell surface proteolysis: regulating cellular ecology. Cell 91, 439–442 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Coussens, L. M., Tinkle, C. L., Hanahan, D. & Werb, Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103, 481–490 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bowden, E., Barth, M., Thomas, D., Glazer, R. & Mueller, S. An invasion related complex of cortactin, paxillin, and PKCμ associates with invadopodia at sites of extracellular matrix degradation. Oncogene 18, 4440–4449 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Nakahara, H. et al. Transmembrane/cytoplasmic domain mediated membrane type 1-matrix metalloproteinase docking to invadopodia is required for cell invasion. Proc. Natl Acad. Sci. USA 94, 7959–7964 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hoegy, S., Oh, H.-R., Corcoran, M. & Stetler-Stevenson, W. Tissue inhibitor of metalloproteinases-2 (TIMP-2) suppresses TKR-growth factor signaling independent of metalloproteinase inhibition. J. Biol. Chem. 276, 3203–3214 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Andreasen, P., Kioller, L., Christensen, L. & Duffy, M. The urokinase type plasminogen activator system in cancer metastasis: a review. Int. J. Cancer 72, 1–22 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Fashena, S. & Thomas, S. M. Signaling by adhesion receptors. Nature Cell Biol. 2, E225–E229 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Braga, V. The crossroads between cell-cell adhesion and motility. Nature Cell Biol. 2, E182–E184 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Jo, M. et al. Cross talk between epidermal growth factor receptor and c-Met signal pathways in transformed cells. J. Biol. Chem. 275, 8806–8811 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Varner, J. A. & Cheresh, D. A. Integrins and cancer. Curr. Opin. Cell Biol. 8, 724–730 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Roberts, A. B., McCune, B. K. & Sporn, M. B. TGF-β: regulation of extracellular matrix. Kidney Int. 41, 557–559 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Varner, J. A., Brooks, P. C. & Cheresh, D. A. The integrin αvβ3: angiogenesis and apoptosis. Cell Adhes. Comm. 3, 367–374 (1995).

    Article  CAS  Google Scholar 

  34. Fukai, F. et al. Release of biologically activities from quiescent fibronectin by conformational change and limited proteolysis by matrix metalloproteinases. Biochemistry 34, 11453–11459 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Davis, G. E. Affinity of integrins for damaged extracellular matrix: alpha v beta 3 binds to denatured collagen type I through RGD sites. Biochem. Biophys. Res. Commun. 182, 1025–1031 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Zlotnik, A. & Yoshie, O. Chemokines: a new classification system and their role in immunity. Immunity 12, 121–127 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Muller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Frisch, S. M., Vuori, K., Ruoslahti, E. & Chan-Hui, P. Y. Control of adhesion-dependent cell survival by focal adhesion kinase. J. Cell Biol. 134, 793–799 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Frisch, S. M. & Ruoslahti, E. Integrins and anoikis. Curr. Opin. Cell Biol. 9, 701–706 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Cantley, L. & Pawson, T. Cell regulation. Curr. Opin. Cell Biol. 13, 121–124 (2001).

    Article  CAS  Google Scholar 

  41. Dusko, I. et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377, 539–544 (1995).

    Article  Google Scholar 

  42. Xue, L., Murray, J. H. & Tolkovsky, A. M. The Ras/phosphatidylinositol 3-kinase and Ras/ERK pathways function as independent survival modules each of which inhibits a distinct apoptotic signaling pathway in sympathetic neurons. J. Biol. Chem. 275, 8817–8824 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Chen, H., Chan, P., Tang, M., Cheng, C. & Chang, T. Tyrosine phosphorylation of focal adhesion kinase stimulated by hepatocyte growth factor leads to mitogen-activated protein kinase activation. J. Biol. Chem. 273, 25777–25782 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Totsukawa, G. et al. Distinct roles of ROCK and MLCK in spatial regulation of MLC phosphorylation for assembly of stress fibers and focal adhesions in 3T3 fibroblasts. J. Cell Biol. 150, 797–806 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liotta, L. A. & Petricoin, E. F. Molecular profiling of human cancer. Nature Genet. Rev. 1, 48–56 (2000).

    Article  CAS  Google Scholar 

  46. St. Croix, B. et al. Genes expressed in human tumor endothelium. Science 289, 1197–1202 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Paweletz, C. P. et al. Reverse phase protein microarrays which capture disease progression shown activation of pro-survival pathways at the cancer invasion front. Oncogene 20, 1981–1989 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Gutheil, J. C. et al. Targeted antiangiogenic therapy for cancer using Vitaxin: a humanized monoclonal antibody to the integrin αvβ3 . Clin. Cancer Res. 6, 3056–3061 (2000).

    CAS  PubMed  Google Scholar 

  49. Kohn, E. C. et al. Angiogenesis: role of calcium-mediated signal transduction. Proc. Natl Acad. Sci. USA 92, 1307–1311 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Masiero, L., Lapidos, K. A., Ambudkar, I. & Kohn, E. C. Regulation of the RhoA pathway in human endothelial cell spreading on type IV collagen: role of calcium influx. J. Cell. Sci. 112, 3205–3213 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Weyant, M. J., Carothers, A. M., Bertangnolli, M. E. & Bertagnolli, M. M. Colon cancer chemopreventative drugs modulate integrin-mediated signaling pathways. Clin. Cancer Res. 6, 949–956 (2000).

    CAS  PubMed  Google Scholar 

  52. Brown, P. D. & Giavazzi, R. Matrix metalloproteinase inhibition: a review of anti-tumour activity. Annals Oncol. 6, 967–974 (1995).

    Article  CAS  Google Scholar 

  53. Rowinsky, E. et al. Phase I and pharmacologic study of the specific matrix metalloproteinase inhibitor BAY 12-9566 on a protracted oral daily dosing schedule in patients with solid malignancies. J. Clin. Oncol. 18, 178–186 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Brooks, P. C. et al. Anti-integrin alpha v beta 3 blocks human breast cancer growth and angiogenesis in human skin. J. Clin. Invest. 96, 1815–1822 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bonfoco, E., Chen, W., Paul, R., Cheresh, D. A. & Cooper, N. R. β1 integrin antagonism on adherent, differentiated human neuroblastoma cells triggers an apoptotic signaling pathway. Neuroscience 101, 1145–1152 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Lode, H. N. et al. Synergy between an antiangiogenic integrin αv antagonist and an antibody-cytokine fusion protein eradicates spontaneous tumor metastases. Proc. Natl Acad. Sci. USA 96, 1591–1596 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kohl, N. E. Farnesyltransferase inhibitors. Preclinical development. Ann. NY Acad. Sci. 886, 91–102 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Sills, A. K. et al. Squalamine inhibits angiogenesis and solid tumor growth in vivo and perturbs embryonic vasculature. Cancer Res. 58, 2784–2792 (1998).

    CAS  PubMed  Google Scholar 

  59. Kohn, E. C. et al. A phase I trial of carboxyamido-triazole and paclitaxel for relapsed solid tumors: potential efficacy of the combination, and demonstration of pharmacokinetic interaction. Clin. Cancer Res. (in the press).

  60. Yuan, Z. Q. et al. Frequent activation of AKT2 and induction of apoptosis by inhibition of phosphoinositide-3-OH kinase/Akt pathway in human ovarian cancer. Oncogene 19, 2324–2330 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Perrotte, P. et al. Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice. Clin. Cancer Res. 5, 257–265 (1999).

    CAS  PubMed  Google Scholar 

  62. Iyer, S., Gurujeyalakshimi, G. & Giri, S. N. Effects of pirfenidone on transforming growth factor-β gene expression at the transcriptional level in bleomycin hamster model of lung fibrosis. J. Pharmacol. Exp. Therapeut. 291, 367–373 (1999).

    CAS  Google Scholar 

  63. Fang, X. et al. Lysophospholipid growth factors in the initiation, progression, metastases and management of ovarian cancer. Ann. NY Acad. Sci. 905, 188–208 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Shayesteh, L. et al. PIK3CA is implicated as an oncogene in ovarian cancer. Nature Genet. 21, 99–102 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Furui, T. et al. Overexpression of edg-2/vzg-1 induces apoptosis and anoikis in ovarian cancer cells in a lysophosphatidic acid-independent manner. Clin. Cancer Res. 5, 430–4318 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liotta, L., Kohn, E. The microenvironment of the tumour–host interface. Nature 411, 375–379 (2001). https://doi.org/10.1038/35077241

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35077241

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing