Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

p73 is a human p53-related protein that can induce apoptosis

A Corrigendum to this article was published on 24 June 1999

Abstract

The protein p53 is the most frequently mutated tumour suppressor to be identified so far in human cancers1,2. The ability of p53 to inhibit cell growth is due, at least in part, to its ability to bind to specific DNA sequences and activate the transcription of target genes such as that encoding the cell-cycle inhibitor p21Waf1/Cip1 (ref. 3). A gene has recently been identified that is predicted to encode a protein with significant amino-acid sequence similarity to p53 (ref. 4). In particular, each of the p53 amino-acid residues implicated in direct sequence-specific DNA binding is conserved in this protein5. This gene, called p73, maps to the short arm of chromosome 1, and is found in a region that is frequently deleted in neuroblastomas6. Here we show that p73 can, at least when overproduced, activate the transcription of p53-responsive genes and inhibit cell growth in a p53-like manner by inducing apoptosis (programmed cell death).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression and subcellular localization of p73.
Figure 2: p73 activates p53-responsive promoters.
Figure 3: Induction of endogenous p21 by ectopically produced p73.
Figure 4: p73 suppresses tumour cell growth and induces apoptosis.

Similar content being viewed by others

References

  1. Hollstein, M., Sidransky, D., Vogelstein, B. & Harris, C. C. p53 mutations in human cancers. Science 253, 49–53 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Levine, A. J., Momand, J. & Finlay, C. A. The p53 tumour supressor gene. Nature 351, 453–456 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Haffner, R. & Oren, M. p53: biochemical properties and biological effects of p53. Curr. Opin. Genet. Dev. 5, 84–90 (1995).

    Article  CAS  Google Scholar 

  4. Kaghad, M. et al. Monoallelically expressed gene related to p53 at the neuroblastoma suppressor-1 locus. Cell (in the press).

  5. Cho, Y., Gorina, S., Jeffrey, P. D. & Pavletich, N. P. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265, 346–355 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Versteeg, R. et al. 1p36: every subband a suppressor? Eur. J. Cancer 31 A, 538–541 (1995).

    Article  Google Scholar 

  7. Kern, S. E. et al. Oncogenic forms of p53 inhibit p53-regulated gene expression. Science 256, 827–829 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Diller, L. et al. p53 functions as a cell cycle control protein in osteosarcomas. Mol. Cell. Biol. 10, 5772–5781 (1990).

    Article  CAS  Google Scholar 

  9. Diller, L. et al. Topological control of p21WAF1/CIP1 expression in normal and neoplastic tissues. Cancer Res. 55, 2910–2919 (1995).

    Google Scholar 

  10. Pietenpol, J. A. et al. Sequence-specific transcriptional activation is essential for growth suppression by p53. Proc. Natl Acad. Sci. USA 91, 1998–2002 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Takeda, O. et al. There may be two tumor suppressor genes on chromosome arm 1p closely associated with biologically distinct subtypes of neuroblastoma. Genes Chrom. Cancer 10, 30–39 (1994).

    Article  CAS  Google Scholar 

  12. Caron, H. et al. Allelic loss of chromosome 1p36 in neuroblastoma is of preferential maternal origin and correlates with N-myc amplification. Nature Genet. 4, 187–191 (1993).

    Article  CAS  Google Scholar 

  13. Hosoi, G. et al. Low frequency of the p53 gene mutations in neuroblastoma. Cancer 73, 3087–3093 (1994).

    Article  CAS  Google Scholar 

  14. Vogan, K. et al. Absence of p53 gene mutations in primary neuroblastomas. Cancer Res. 53, 5269–5273 (1993).

    CAS  PubMed  Google Scholar 

  15. Heald, R., McLoughlin, M. & McKeon, F. Human wee1 maintains mitotic timing by protecting the nucleus from cytoplasmically activated Cdc2 kinase. Cell 74, 463–474 (1993).

    Article  CAS  Google Scholar 

  16. Chen, X., Farmer, G., Zhu, H., Prywes, R. & Prives, C. Cooperative DNA binding of p53 with TFIID (TBP): a possible mechanism for transcriptional activation. Genes Dev. 7, 1837–1849 (1993). Erratum, Genes Dev. 7, 2652 (1993).

    Article  CAS  Google Scholar 

  17. Flemington, E. K., Lytle, J. P., Cayrol, C., Borras, A. M. & Speck, S. H. DNA-binding-defective mutants of the Epstein-Barr virus lytic switch activator Zta transactivate with altered specificities. Mol. Cell. Biol. 14, 3041–3052 (1994).

    Article  CAS  Google Scholar 

  18. el-Deiry, W. S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).

    Article  CAS  Google Scholar 

  19. Baker, S. J., Markowitz, S., Fearon, E. R., Willson, J. K. & Vogelstein, B. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science 249, 912–915 (1990).

    Article  ADS  CAS  Google Scholar 

  20. Chen, C. & Okayama, H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7, 2745–2752 (1987).

    Article  CAS  Google Scholar 

  21. Graham, F. L. & Eb, A. J. v. d. Anew technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52, 456–467 (1973).

    Article  CAS  Google Scholar 

  22. Chen, C. & Okayama, H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7, 2745–2752 (1987).

    Article  CAS  Google Scholar 

  23. Gavrieli, Y., Sherman, Y. & Ben-Sasson, S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119, 493–501 (1992).

    Article  CAS  Google Scholar 

  24. Sellers, W. R., Rodgers, J. W. & Kaelin, W. G. Apotent transrepression domain in the retinoblastoma protein induces a cell cycle arrest when bound to E2F sites. Proc. Natl Acad. Sci. USA 92, 11544–11548 (1995).

    Article  ADS  CAS  Google Scholar 

  25. Qin, X. Q., Chittenden, T., Livingston, D. M. & Kaelin, W. Identification of a growth suppression domain within the retinoblastoma gene product. Genes Dev. 6, 953–964 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Creancier, N. Bensaid and D. Caput for providing us with p73 cDNAs before publication; K. Yu and D. Cohen for p21 promoter plasmids; B. Bierer, L. Diller, D. Fisher and D.Haber for critically reading the manuscript; and members of the W.G.K.'s laboratory for discussions.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jost, C., Marin, M. & Jr, W. p73 is a human p53-related protein that can induce apoptosis. Nature 389, 191–194 (1997). https://doi.org/10.1038/38298

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/38298

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing