Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mechanisms of angiogenesis

Abstract

After the developing embryo has formed a primary vascular plexus by a process termed vasculogenesis, further blood vessels are generated by both sprouting and non-sprouting angiogenesis, which are progressively pruned and remodelled into a functional adult circulatory system. Recent results, particularly from the study of mice lacking some of the signalling systems involved, have greatly improved our understanding of the molecular basis underlying these events, and may suggest new approaches for treating conditions such as cancer that depend on angiogenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Risau, W. & Flamme, I. Vasculogenesis. Annu. Rev. Cell Dev. Biol. 11, 73–91 (1995).

    Article  CAS  Google Scholar 

  2. Mustonen, T. & Alitalo, K. Endothelial receptor tyrosine kinases involved in angiogenesis. J. Cell Biol. 129, 895–898 (1995).

    Article  CAS  Google Scholar 

  3. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med. 1, 27–31 (1995).

    Article  CAS  Google Scholar 

  4. Shalaby, F. et al. Failure of blood-island formation and vasculogenesis in flk-1-deficient mice. Nature 376, 62–66 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Porcher, C. et al. The T cell leukemia oncoprotein Scl/Tal-1 is essential for development of all hematopoietic lineages. Cell 86, 47–57 (1996).

    Article  CAS  Google Scholar 

  6. Robb, L. et al. The Scl gene product is required for the generation of all hematopoietic lineages in the adult mouse. EMBO J. 15, 4123–4129 (1996).

    Article  CAS  Google Scholar 

  7. Fong, G. H., Rossant, J., Gertsenstein, M. & Breitman, M. L. Role of the flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376, 66–70 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 435–439 (1996).

    Article  ADS  Google Scholar 

  10. Breier, G. & Risau, W. The role of VEGF in blood vessel formation. Trends Cell Biol. 6, 454–456 (1996).

    Article  CAS  Google Scholar 

  11. Pardanaud, L. et al. Two distinct endothelial lineages in ontogeny, one of them related to hemopoiesis. Development 122, 1363–1371 (1996).

    CAS  PubMed  Google Scholar 

  12. Noden, D. M. in The development of the vascular system (eds Feinberg, R. N., Sherer, G. K. & Auerbach, R.) 1–24 (Karger, Basel, 1991).

    Google Scholar 

  13. Risau, W. What, if anything, is an angiogenic factor. Cancer Metast. Rev. 15, 149–151 (1996).

    Article  CAS  Google Scholar 

  14. Short, R. H. D. Alveolar epithelium in relation to growth of the lung. Phil. Trans. R. Soc. Lond. B 235, 35–87 (1950).

    ADS  CAS  Google Scholar 

  15. Patan, S., Haenni, B. & Burri, P. H. Implementation of intussusceptive microvascular growth in the chicken choriollantoic membrane. 1. Pillar formation by folding of the capillary wall. Microvasc. Res. 51, 80–98 (1996).

    Article  CAS  Google Scholar 

  16. Pardanaud, L., Yassine, F. & Dieterlen-Lievre, F. Relationship between vasculogenesis, angiogenesis and hematopoiesis during avian ontogeny. Development 105, 473–485 (1989).

    CAS  Google Scholar 

  17. Drake, C. J. & Little, C. D. Exogenous vascular endothelial growth-factor induces malformed and hyperfused vessels during embryonic neovascularization. Proc. Natl Acad. Sci. USA 92, 7657–7661 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Sato, T. N. et al. Distinct roles of the receptor tyrosine kinases tie-1 and tie-2 in blood-vessel formation. Nature 376, 70–74 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Puri, M. C., Rossant, J., Alitolo, K., Bernstein, A. & Partanen, J. The receptor tyrosine kinase tie is required for integrity and survival of vascular endothelial-cells. EMBO J. 14, 5884–5891 (1995).

    Article  CAS  Google Scholar 

  20. Davis, S. et al. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87, 1161–1169 (1996).

    Article  CAS  Google Scholar 

  21. Suri, C. et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87, 1171–1180 (1996).

    Article  CAS  Google Scholar 

  22. Yamaguchi, T. P. et al. Flk-1, an flt-related receptor tyrosine kinase is an early marker for endothelial-cell precursors. Development 118, 489–498 (1993).

    CAS  Google Scholar 

  23. Ashton, N. Oxygen and the growth and development of retinal vessels. Am. J. Ophthalmol. 62, 412–435 (1966).

    Article  CAS  Google Scholar 

  24. Augustin, H. G., Braun, K., Telemenakis, I., Modlich, U. & Kuhn, W. Ovarian angiogenesis-phenotypic characterization of endothelial-cells in a physiological model of blood-vessel growth and regression. Am. J. Pathol. 147, 339–351 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Alon, T. et al. Vascular endothelial growth-factor acts as a survival factor for newly formed retinal-vessels and has implications for retinopathy of prematurity. Nature Med. 1, 1024–1028 (1995).

    Article  CAS  Google Scholar 

  26. Markwald, R. R. et al. in The Embryonic Origins of Defective Heart Development (eds Bockman, D. E. & Kirby, M. L.) 13–25 (Ann. NY Acad. Sci., New York, 1990).

    Google Scholar 

  27. Henkemeyer, M. et al. Vascular system defects and neuronal apoptosis in mice lacking Ras GTPase-activating protein. Nature 307, 648–649 (1984).

    Article  Google Scholar 

  28. Franke, R. P. et al. Induction of human vascular endothelial stress fibres by fluid shear stress. Nature 307, 648–649 (1984).

    Article  ADS  CAS  Google Scholar 

  29. Resnick, N. & Gimbrone, M. A. Hemodynamic forces are complex regulators of endothelial gene-expression. FASEB J. 9, 874–882 (1995).

    Article  CAS  Google Scholar 

  30. Risau, W. Differentiation of endothelium. FASEB J. 9, 926–933 (1995).

    Article  CAS  Google Scholar 

  31. Strömblad, S. & Cheresh, D. A. The role of cell adhesion molecules in angiogenesis. Trends Cell Biol. 6, 462–468 (1996).

    Article  Google Scholar 

  32. Dickson, M. C. et al. Defective hematopoiesis and vasculogenesis in transforming growth-factor-beta-1 knockout mice. Development 121, 1845–1854 (1995).

    CAS  Google Scholar 

  33. Johnson, D. W. et al. Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nature Genet. 13, 189–195 (1996).

    Article  CAS  Google Scholar 

  34. Carmeliet, P. et al. Role of tissue factor in embryonic blood vessel development. Nature 383, 73–75 (1996).

    Article  ADS  CAS  Google Scholar 

  35. Antonelli-Orlidge, A., Saunders, K. B., Smith, S. R. & D'Amore, P. A. An activated form of transforming growth factor-β is produced by cocultures of endothelial-cells and pericytes. Proc. Natl Acad. Sci. USA 86, 4544–4548 (1989).

    Article  ADS  CAS  Google Scholar 

  36. Folkman, J. Seminars in medicine of the Beth Israel hospital, Boston—clinical applications of research on angiogenesis. N. Engl. J. Med. 333, 1757–1763 (1995).

    Article  CAS  Google Scholar 

  37. Oreilly, M. S. et al. Angiostatin—a circulating endothelial-cell inhibitor that suppresses angiogenesis and tumor growth. Cell 59, 471–482 (1994).

    CAS  Google Scholar 

  38. Shweiki, D., Itin, A., Soffer, D. & Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843–845 (1992).

    Article  ADS  CAS  Google Scholar 

  39. Plate, K. H., Breier, G., Weich, H. A. & Risau, W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359, 845–848 (1992).

    Article  ADS  CAS  Google Scholar 

  40. Semenza, G. L. Transcriptional regulation by hypoxia-inducible factor 1—molecular mechanisms of oxygen homeostasis. Trends Cardiovasc. Med. 6, 151–157 (1996).

    Article  CAS  Google Scholar 

  41. Stein, I., Neeman, M., Shweiki, D., Itin, A. & Keshet, E. Stabilization of vascular endothelial growth-factor messenger RNA by hypoxia and hypoglycemia and coregulation with other ischemia-induced genes. Mol. Cell. Biol. 15, 5363–5368 (1995).

    Article  CAS  Google Scholar 

  42. Wizigmann-Voos, S., Breier, G., Risau, W. & Plate, K. H. Up-regulation of vascular endothelial growth factor and its receptors in Von Hippel-Lindau disease-associated and sporadic hemangioblastomas. Cancer Res. 55, 1358–1364 (1995).

    CAS  PubMed  Google Scholar 

  43. Iliopoulos, O., Levy, A. P., Jiang, C., Kaelin, W. G. & Goldberg, M. A. Negative regulation of hypoxia-inducible genes by the Von Hippel Lindau protein. Proc. Natl Acad. Sci. USA 93, 10595–10599 (1996).

    Article  ADS  CAS  Google Scholar 

  44. Gnarra, J. R. et al. Post-transcriptional regulation of vascular endothelial growth factor mRNA by the product of the VHL tumor suppressor gene. Proc. Natl Acad. Sci. USA 93, 10589–10594 (1996).

    Article  ADS  CAS  Google Scholar 

  45. Samakovlis, C. et al. Development of the Drosophila tracheal system occurs by a series of morphologically distinct but genetically coupled branching events. Development 122, 1395–1407 (1996).

    CAS  PubMed  Google Scholar 

  46. Wilk, R., Weizman, I. & Shilo, B. Z. Trachealess encodes a bHLH-PAS protein that is an inducer of tracheal cell fates in Drosophila. Genes Dev. 10, 93–102 (1996).

    Article  CAS  Google Scholar 

  47. Guillemin, K. et al. The pruned gene encodes the Drosophila serum response factor and regulates cytoplasmic outgrowth during terminal branching of the tracheal system. Development 122, 1353–1362 (1996).

    CAS  PubMed  Google Scholar 

  48. Stone, J. et al. Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J. Neurosci. 15, 4738–4747 (1995).

    Article  CAS  Google Scholar 

  49. Kim, K. J. et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362, 841–844 (1993).

    Article  ADS  CAS  Google Scholar 

  50. Millauer, B., Shawver, L. K., Plate, K. H., Risau, W. & Ullrich, A. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 367, 576–579 (1994).

    Article  ADS  CAS  Google Scholar 

  51. Millauer, B. et al. Dominant-negative inhibition of Flk-1 suppresses the growth of many tumor types in vivo. Cancer Res. 56, 1615–1620 (1996).

    CAS  PubMed  Google Scholar 

  52. Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364 (1996).

    Article  CAS  Google Scholar 

  53. Graeber, T. G. et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379, 88–91 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Risau, W. Mechanisms of angiogenesis. Nature 386, 671–674 (1997). https://doi.org/10.1038/386671a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/386671a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing