Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Chemotherapeutic drugs—more really is not better

Recent insights into the molecular mechanisms that regulate the process of metastasis and the complex interactions between metastatic cells and host factors have provided a biological foundation for the design of more effective therapies.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: To produce metastasis, tumor cells must complete a very selective series of steps.

References

  1. Paget, S. The distribution of secondary growths in cancer of the breast. Lancet 1, 571–573 (1889).

    Article  Google Scholar 

  2. Fidler, I.J. Critical factors in the biology of human cancer metastasis: Twenty-eighth G.H.A. Clowes Memorial Award Lecture. Cancer Res. 50, 6130–6138 (1990).

    CAS  PubMed  Google Scholar 

  3. Fidler, I.J. & Kripke, M.L. Metastasis results from pre-existing variant cells within a malignant tumor. Science 197, 893–895 (1977).

    Article  CAS  Google Scholar 

  4. Fidler, I.J. Modulation of the organ microenvironment for the treatment of cancer metastasis. J. Natl. Cancer Inst. 84, 1588–1592 (1995).

    Article  Google Scholar 

  5. Browder, T. et al. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res. 60, 1878–1886 (2000).

    CAS  Google Scholar 

  6. Klement, G. et al. Chronically sustained regressions of human tumor xenografts in the absence of overt toxicity by continuous low-dose vinblastine and anti-VEGF receptor-2 antibody therapy. J. Clin. Invest. 105, R15–R24 (2000).

    Article  CAS  Google Scholar 

  7. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid, and other disease. Nature Med. 1, 27–31 (1995).

    Article  CAS  Google Scholar 

  8. Benjamin, L.E. & Keshet, E. Conditioned switching of vascular endothelial growth factor (VEGF) expression in tumors: induction of endothelial cell shedding and regression of hemangioblastoma-like vessels by VEGF withdrawal. Proc. Natl. Acad. Sci. USA 84, 8761–8766 (1997).

    Article  Google Scholar 

  9. Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971).

    Article  CAS  Google Scholar 

  10. Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364 (1996).

    Article  CAS  Google Scholar 

  11. Yoneda, J. et al. Angiogenesis and growth of murine colon carcinoma are dependent on infiltrating leukocytes. Cancer Biother. Radiopharm. 14, 221–230 (1999).

    Article  CAS  Google Scholar 

  12. Folkman, M.J. Angiogenic zip code. Nature Biotech. 17, 749–753 (1999).

    Article  CAS  Google Scholar 

  13. Pasqualini, R. & Ruoslahti, E. Organ targeting in vivo using phage display peptide libraries. Nature 380, 364–366 (1996).

    Article  CAS  Google Scholar 

  14. Arap, W., Pasqualini, R. & Ruoslahti, E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279, 377–380 (1998).

    Article  CAS  Google Scholar 

  15. Auerbach, W. & Auerbach, R. Angiogenesis inhibition: a review. Pharmacol. Ther. 63, 265–311 (1994).

    Article  CAS  Google Scholar 

  16. Baker, C.H., Bruns, C.J., Fan, D., Killion, J.J. & Fidler, I.J. Differential effects of angiostatin (K1-4) and K5 on cultured endothelial cells of different origin. Proc. Amer. Assoc. Cancer Res. 41, 308 (2000).

    Google Scholar 

  17. Hidalgo, M. et al. Phase I-II study of gemcitabine and fluorouracil as a continuous infusion in patients with pancreatic cancer. J. Clin. Oncol. 17, 585–592 (1999).

    Article  CAS  Google Scholar 

  18. Ezekowitz, R.A.B., Mulliken, J.B. & Folkman, J. Interferon alfa-2a therapy for life-threatening hemangiomas of infancy. N. Engl. J. Med. 326, 1456–1463 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fidler, I., Ellis, L. Chemotherapeutic drugs—more really is not better. Nat Med 6, 500–502 (2000). https://doi.org/10.1038/74969

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/74969

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing