Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

The ubiquitin system

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Discovery of the ligation of ubiquitin to lysozyme, a substrate of the proteolytic system.
Figure 2: The ubiquitin pathway, then and now.
Figure 3: Accelerated or decreased rates of ubiquitin-mediated proteolysis can underlie the pathogenesis of human diseases.
Figure 4: Drug targeting of an E3 enzyme can become a ‘double-edged sword’.
Figure 5: The ubiquitin system of S. cerevisiae51.
Figure 6: The N-end rule pathway.
Figure 7: Ubiquitin-dependent activation of peptide import in S. cerevisiae20.

References

  1. Schoenheimer, R. The Dynamic State of Body Constituents (Harvard University Press, Cambridge, Massachusetts, 1942).

    Google Scholar 

  2. Schimke, R.T. & Doyle, D. Control of enzyme levels in animal tissues. Annu. Rev. Biochem. 39, 929–979 (1971).

    Article  Google Scholar 

  3. Haider, M. & Segal, H.L. Some characteristics of the alanine aminotransferase- and arginase-inactivating system of lysosomes. Arch. Biochem. Biophys. 148, 228–237 (1972).

    Article  CAS  Google Scholar 

  4. Hershko, A. & Tomkins, G.M. Studies on the degradation of tyrosine aminotransferase in hepatoma cells in culture. Influence of the composition of the medium and adenosine triphosphate dependence. J. Biol. Chem. 246, 710–714 (1971).

    CAS  Google Scholar 

  5. Simpson, M.V. The release of labeled amino acids from proteins in liver slices. J. Biol. Chem. 201, 143–154 (1953).

    CAS  Google Scholar 

  6. Hershko, A. & Ciechanover, A. Mechanisms of intracellular protein breakdown. Annu. Rev. Biochem. 51, 335–364 (1982).

    Article  CAS  Google Scholar 

  7. Etlinger, J.D. & Goldberg, A.L. A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes. Proc. Natl. Acad. Sci. USA. 74, 54–58 (1977).

    Article  CAS  Google Scholar 

  8. Ciechanover, A., Hod, Y. & Hershko, A. a heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes. Biochem. Biophys. Res. Commun. 81, 1100–1105 (1978).

    Article  Google Scholar 

  9. Wilkinson, K.D., Urban, M.K. & Haas, A.L. Ubiquitin is the ATP-dependent proteolysis factor of rabbit reticulocytes. J. Biol. Chem. 255, 7529–7532 (1980).

    CAS  Google Scholar 

  10. Goldstein, G. et al. Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells. Proc. Natl. Acad. Sci. USA. 72, 11–15 (1975).

    Article  CAS  Google Scholar 

  11. Goldknopf, I.L. & Busch, H. Isopeptide linkage between nonhistone and histone A polypeptides of chromosomal conjugate protein A24. Proc. Natl. Acad. Sci. USA. 74, 864–868 (1977).

    Article  CAS  Google Scholar 

  12. Ciechanover, A., Heller, H., Elias, S., Haas, A. L. & Hershko, A. ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation. Proc. Natl. Acad. Sci. USA. 77, 1365–1368 (1980).

    Article  CAS  Google Scholar 

  13. Hershko, A., Ciechanover, A, Heller, H., Haas, A. L. & Rose, I. A. Proposed role of ATP in protein breakdown: conjugation of proteins with multiple chains of the polypeptide of ATP-dependent proteolysis. Proc. Natl. Acad. Sci. USA. 77, 1783–1786 (1980).

    Article  CAS  Google Scholar 

  14. Lam, Y.A., Xu, W., DeMartino, G.N. & Cohen, R.E. Editing of ubiquitin conjugates by an isopeptidase of the 26S proteasome. Nature 385, 737–740 (1997).

    Article  CAS  Google Scholar 

  15. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  Google Scholar 

  16. Hershko, A., Heller, H., Elias, S. & Ciechanover, A. Components of ubiquitin-protein ligase system: resolution, affinity purification and role in protein breakdown. J. Biol. Chem. 258, 8206–8214 (1983).

    CAS  Google Scholar 

  17. Hershko, A., Heller, A., Eytan, E. & Reiss, Y. The protein binding site of the ubiquitin-protein ligase system. J. Biol. Chem. 261, 11992–11999 (1986).

    CAS  PubMed  Google Scholar 

  18. Hough, R., Pratt, G. & Rechsteiner, M. Ubiquitin-lysozyme conjugates. Identification and characterization of an ATP-dependent protease from rabbit reticulocyte lysates. J. Biol. Chem. 261, 2400–2408 (1986).

    CAS  Google Scholar 

  19. Hershko, A. Lessons from the discovery of the ubiquitin system. Trends Biochem. Sci. 21, 445–449 (1996).

    Article  CAS  Google Scholar 

  20. Hershko, A., Heller, H., Ganoth, D. & Ciechanover, A. in Protein Turnover and Lysosome Function (eds. Segal, H.L. & Doyle, D.J.) 149–169 (Academic Press, New York, 1978).

    Book  Google Scholar 

  21. Ciechanover, A., Elias, S., Heller, H., Ferber, S. & Hershko, A. Characterization of the heat-stable polypeptide of the ATP-dependent proteolytic system from reticulocytes. J. Biol. Chem. 255, 7525–7528 (1980).

    CAS  Google Scholar 

  22. Wilkinson, K.D., Urban, M.K. & Haas, A.L. Ubiquitin is the ATP-dependent proteolysis factor I of rabbit reticulocytes. J. Biol. Chem. 255, 7529–7532 (1980).

    CAS  Google Scholar 

  23. Hershko, A. & Heller, H. Occurrence of a polyubiquitin structure in ubiquitin-protein conjugates. Biochem. Biophys. Res. Common. 128, 1079–1086 (1985).

    Article  CAS  Google Scholar 

  24. Chau, V. et al. A multiubiquitin chain is confined to specific Lysine in a targeted short-lived protein. Science 243, 1576–1583 (1989).

    Article  CAS  Google Scholar 

  25. Lipmann, F, Gevers, W., Kleinkauf, H. & Roskoski, R. Jr. Polypeptide synthesis on protein templates: The enzymatic synthesis of gramicidin S and tyrocidine. Adv. Enzymol. Relat. Areas Mol. Biol. 35, 1–34 (1971).

    CAS  PubMed  Google Scholar 

  26. Ciechanover, A., Elias, S., Heller, H. & Hershko, A. “Covalent affinity” purification of ubiquitin activating enzyme. J. Biol. Chem. 257, 2537–2542 (1982).

    Google Scholar 

  27. Hershko, A., Eytan, E., Ciechanover, A. & Haas, A.L. Immunochemical analysis of the turnover of ubiquitin-protein conjugates in intact cells: Relationship to the breakdown of abnormal proteins. J. Biol. Chem. 257, 13964–13970 (1982).

    CAS  Google Scholar 

  28. Finley, D., Ciechanover, A. & Varshavsky, A. . Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85. Cell 37, 43–55 (1984).

    Article  CAS  Google Scholar 

  29. Ciechanover, A., Finley D. & Varshavsky, A. Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85. Cell 37, 57–66 (1984).

    Article  CAS  Google Scholar 

  30. Ferber, S. & Ciechanover, A. Transfer RNA is required for conjugation of ubiquitin to selective substrates of the ubiquitin- and ATP-dependent proteolytic system. J. Biol. Chem. 261, 3128–3134 (1986).

    CAS  PubMed  Google Scholar 

  31. Ferber, S. & Ciechanover, A. Role of arginine-tRNA in protein degradation by the ubiquitin pathway. Nature 326, 808–811 (1987).

    Article  CAS  Google Scholar 

  32. Varshavsky, A. The N-end rule pathway of protein degradation. Genes Cells 2, 13–28 (1997).

    Article  CAS  Google Scholar 

  33. Hershko, A., Heller, H., Eytan, E., Kaklij, G. & Rose, I.A. Role of α-amino group of protein in ubiquitin-mediated protein breakdown. Proc. Natl. Acad. Sci. USA 81, 7021–7025 (1984).

    Article  CAS  Google Scholar 

  34. Mayer, A. Siegel, N.R., Schwartz, A.L. & Ciechanover, A. Degradation of proteins with acetylated amino termini by the ubiquitin system. Science 244, 1480–1483 (1989).

    Article  CAS  Google Scholar 

  35. Scheffner, M., Werness, B.A., Huibregtse, J.M., Levine, A.J. & Howley, P.M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63, 1129–1136 (1990).

    Article  CAS  Google Scholar 

  36. Glotzer, M., Murray, A.W. & Kirschner M.W. Cyclin is degraded by the ubiquitin pathway. Nature 349, 132–138 (1991).

    Article  CAS  Google Scholar 

  37. Hershko, A., Ganoth, D., Pehrson, J., Palazzo, R.E., & Cohen, L.H. . Methylated ubiquitin inhibits cyclin degradation in clam embryo extracts. J. Biol. Chem. 266, 16376–16379 (1991).

    CAS  PubMed  Google Scholar 

  38. Ciechanover, A. et al. Degradation of nuclear oncoproteins by the ubiquitin system in vitro. Proc. Natl. Acad. Sci. USA 88, 139–143 (1991).

    Article  CAS  Google Scholar 

  39. Ciechanover, A., Orian, A. & Schwartz, A.L.. Ubiquitin-mediated proteolysis: Biological regulation via destruction. BioEssays 22, 442–451 (2000).

    Article  CAS  Google Scholar 

  40. Yaron, A. et al. Inhibition of NF-κB cellular function via specific targeting of the IκBα-ubiquitin ligase. EMBO J. 16, 6486–6494 (1997).

    Article  CAS  Google Scholar 

  41. Butz, K., Denk, C., Ullmann, A., Scheffner, M. & Hoppe-Seyler, F. Induction of apoptosis in human papillomavirus positive cancer cells by peptide aptamers targeting the viral E6 oncoprotein. Proc. Natl. Acad. Sci. USA 97, 6693–6697 (2000).

    Article  CAS  Google Scholar 

  42. Finley, D., Özkaynak, E. & Varshavsky, A. The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48, 1035–1046 (1987).

    Article  CAS  Google Scholar 

  43. Jentsch, S., McGrath, J.P. & Varshavsky, A. The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme. Nature 329, 131–134 (1987).

    Article  CAS  Google Scholar 

  44. Goebl, M.G. et al. The yeast cell cycle gene CDC34 encodes a ubiquitin-conjugating enzyme. Science 241, 1331–1335 (1988).

    Article  CAS  Google Scholar 

  45. Finley, D., Bartel, B. & Varshavsky, A. The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature 338, 394–401 (1989).

    Article  CAS  Google Scholar 

  46. Bachmair, A., Finley, D. & Varshavsky, A. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179–186 (1986).

    Article  CAS  Google Scholar 

  47. Varshavsky, A. Ubiquitin fusion technique and its descendants. Meth. Enzymol. 327, 578–593 (2000).

    Article  CAS  Google Scholar 

  48. Varshavsky, A. The N-end rule: functions, mysteries, uses. Proc. Natl. Acad. Sci. USA 93, 12142–12149 (1996).

    Article  CAS  Google Scholar 

  49. Johnson, E. S., Ma, P. C., Ota, I. M. & Varshavsky, A. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J. Biol. Chem. 270, 17442–17456 (1995).

    Article  CAS  Google Scholar 

  50. Suzuki, T. & Varshavsky, A. Degradation signals in the lysine-asparagine sequence space. EMBO J. 18, 6017–6026 (1999).

    Article  CAS  Google Scholar 

  51. Varshavsky, A. The ubiquitin system. Trends Biochem. Sci. 22, 383–387 (1997).

    Article  CAS  Google Scholar 

  52. Xie, Y. & Varshavsky, A. Physical association of ubiquitin ligases and the 26S proteasome. Proc. Natl. Acad. Sci. USA 97, 2497–2502 (2000).

    Article  CAS  Google Scholar 

  53. Johnson, E.S., Gonda, D.K. & Varshavsky, A. Cis-trans recognition and subunit-specific degradation of short-lived proteins. Nature 346, 287–291 (1990).

    Article  CAS  Google Scholar 

  54. Kwon, Y.T. et al. Altered activity, social behavior, and spatial memory in mice lacking the NTAN1p amidase and the asparagine branch of the N-end rule pathway. Mol. Cell. Biol. 20, 4135–4148 (2000).

    Article  CAS  Google Scholar 

  55. Davydov, I.V. & Varshavsky, A. RGS4 is arginylated and degraded by the N-end rule pathway in vitro. J. Biol. Chem. 275, 22931–22941 (2000).

    Article  CAS  Google Scholar 

  56. Byrd, C., Turner, G.C. & Varshavsky, A. The N-end rule pathway controls the import of peptides through degradation of a transcriptional repressor. EMBO J. 17, 269–277 (1998).

    Article  CAS  Google Scholar 

  57. Turner, G., Du, F. & Varshavsky, A. Peptides accelerate their uptake by activating a ubiquitin-dependent proteolytic pathway. Nature 405, 579–582 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hershko, A., Ciechanover, A. & Varshavsky, A. The ubiquitin system. Nat Med 6, 1073–1081 (2000). https://doi.org/10.1038/80384

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/80384

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing