Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pluripotency of mesenchymal stem cells derived from adult marrow

A Corrigendum to this article was published on 14 June 2007

Abstract

We report here that cells co-purifying with mesenchymal stem cells—termed here multipotent adult progenitor cells or MAPCs—differentiate, at the single cell level, not only into mesenchymal cells, but also cells with visceral mesoderm, neuroectoderm and endoderm characteristics in vitro. When injected into an early blastocyst, single MAPCs contribute to most, if not all, somatic cell types. On transplantation into a non-irradiated host, MAPCs engraft and differentiate to the haematopoietic lineage, in addition to the epithelium of liver, lung and gut. Engraftment in the haematopoietic system as well as the gastrointestinal tract is increased when MAPCs are transplanted in a minimally irradiated host. As MAPCs proliferate extensively without obvious senescence or loss of differentiation potential, they may be an ideal cell source for therapy of inherited or degenerative diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characteristics of mMAPCs.
Figure 2: Single cell origin of mMAPC and rMAPC cultures initiated from ten cells per well, and their differentiated progeny (see also Supplementary Information Table 2).
Figure 3: In vitro differentiation of mMAPCs to endothelium, neuroectoderm and endoderm.
Figure 4: Chimaerism detection by X-gal staining and anti-β-gal staining in animals generated from blastocysts microinjected with a single ROSA26 MAPC (see also Table 1 and Supplementary Information Fig. 4).
Figure 5: Immunofluorescence staining of individual organs from a 45% chimaeric mouse.
Figure 6: Engraftment and in vivo differentiation of mMAPCs.

Similar content being viewed by others

References

  1. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998)

    Article  ADS  CAS  Google Scholar 

  2. Frankel, M. S. In search of stem cell policy. Science 298, 1397 (2000)

    Article  Google Scholar 

  3. Weissman, I. L. Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science 287, 1442–1446 (2000)

    Article  ADS  CAS  Google Scholar 

  4. Gage, F. H. Mammalian neural stem cells. Science 287, 1433–1438 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Potten, C. Stem cells in gastrointestinal epithelium: numbers, characteristics and death. Phil. Trans R. Soc. Lond. B 353, 821–830 (1998)

    Article  CAS  Google Scholar 

  6. Watt, F. Epidermal stem cells: markers patterning and the control of stem cell fate. Phil. Trans. R. Soc. Lond. B 353, 831 (1997)

    Article  Google Scholar 

  7. Alison, M. & Sarraf, C. Hepatic stem cells. J. Hepatol. 29, 678–683 (1998)

    Article  Google Scholar 

  8. Pittenger, M. F. et al. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999)

    Article  ADS  CAS  Google Scholar 

  9. Ferrari, G. et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279, 528–530 (1998)

    Article  Google Scholar 

  10. Gussoni, E. et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401, 390–394 (1999)

    ADS  CAS  Google Scholar 

  11. Orlic, D. et al. Bone marrow cells regenerate infarcted myocardium. Nature 410, 701–705 (2001)

    Article  ADS  CAS  Google Scholar 

  12. Jackson, K. et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest. 107, 1395–1402 (2001)

    Article  CAS  Google Scholar 

  13. Lin, Y., Weisdorf, D. J., Solovey, A. & Hebbel, R. P. Origins of circulating endothelial cells and endothelial outgrowth from blood. J. Clin. Invest. 105, 71–77 (2000)

    Article  CAS  Google Scholar 

  14. Asahara, T. et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res. 85, 221–228 (1999)

    Article  CAS  Google Scholar 

  15. Petersen, B. E. et al. Bone marrow as a potential source of hepatic oval cells. Science 284, 1168–1170 (1999)

    Article  ADS  CAS  Google Scholar 

  16. Theise, N. D. et al. Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology 31, 235–240 (2000)

    Article  CAS  Google Scholar 

  17. Lagasse, E. et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nature Med. 6, 1229–1234 (2000)

    Article  CAS  Google Scholar 

  18. Krause, D. S. et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105, 369–377 (2001)

    Article  CAS  Google Scholar 

  19. Brazelton, T. R., Rossi, F. M. V., Keshet, G. I. & Blau, H. E. From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290, 1775–1779 (2000)

    Article  ADS  CAS  Google Scholar 

  20. Kopen, G., Prockop, D. & Phinney, D. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc. Natl Acad. Sci. USA 96, 10711–10716 (1999)

    Article  ADS  CAS  Google Scholar 

  21. Mezey, E., Chandross, K. J., Harta, G., Maki, R. A. & McKercher, S. R. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290, 1779–1782 (2000)

    Article  ADS  CAS  Google Scholar 

  22. Sanchez-Ramos, J. et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp. Neurol. 164, 247–256 (2000)

    Article  CAS  Google Scholar 

  23. Bjornson, C., Rietze, R., Reynolds, B., Magli, M. & Vescovi, A. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 283, 354–357 (1999)

    Article  Google Scholar 

  24. Morshead, C. M., Benveniste, P., Iscove, N. N. & van der Kooy, D. Hematopoietic competence is a rare property of neural stem cells that may depend on genetic and epigenetic alterations. Nature Med. 8, 268–273 (2002)

    Article  CAS  Google Scholar 

  25. Jackson, K., Mi, T. & Goodell, M. A. Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc. Natl Acad. Sci. USA 96, 14482–14486 (1999)

    Article  ADS  CAS  Google Scholar 

  26. Kawada, H. & Ogawa, M. Bone marrow origin of hematopoietic progenitors and stem cells in murine muscle. Blood 98, 2008–2013 (2001)

    Article  CAS  Google Scholar 

  27. Clarke, D. L. et al. Generalized potential of adult neural stem cells. Science 288, 1660–1663 (2000)

    Article  ADS  CAS  Google Scholar 

  28. Reyes, M. et al. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 98, 2615–2625 (2001)

    Article  CAS  Google Scholar 

  29. Reyes, M. et al. Origin of endothelial progenitors in human post-natal bone marrow. J. Clin. Invest. 109, 337–346 (2002)

    Article  CAS  Google Scholar 

  30. Schwartz, R. E. et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J. Clin. Invest. 109, 1291–1302 (2002)

    Article  CAS  Google Scholar 

  31. Odorico, J. S., Kaufman, D. S. & Thomson, J. A. Multilineage differentiation from human embryonic stem cell lines. Stem Cells 19, 193–204 (2001)

    Article  CAS  Google Scholar 

  32. Williams, R. L. et al. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336, 684–687 (1988)

    Article  ADS  CAS  Google Scholar 

  33. Scholer, H. R., Hatzopoulos, A. K., Balling, R., Suzuki, N. & Gruss, P. A family of octamer-specific proteins present during mouse embryogenesis: evidence for germline-specific expression of an Oct factor. EMBO J. 8, 2543–2550 (1989)

    Article  CAS  Google Scholar 

  34. Ben-Shushan, E., Thompson, J. R., Gudas, L. J. & Bergman, Y. Rex-1, a gene encoding a transcription factor expressed in the early embryo, is regulated via Oct-3/4 and Oct-6 binding to an octamer site and a novel protein, Rox-1, binding to an adjacent site. Mol. Cell Biol. 18, 1866–1878 (1998)

    Article  CAS  Google Scholar 

  35. Jordan, C., McKearn, J. & Lemischka, I. Cellular and developmental properties of fetal hematopoietic stem cells. Cell 61, 953–963 (1990)

    Article  CAS  Google Scholar 

  36. Nolta, J., Dao, M., Wells, S., Smogorzewska, E. & Kohn, D. Transduction of pluripotent human hematopoietic stem cells demonstrated by clonal analysis after engraftment in immune-deficient mice. Proc. Natl Acad. Sci USA 93, 2414–2419 (1996)

    Article  ADS  CAS  Google Scholar 

  37. Lenvik, T., Lund, T. C. & Verfaillie, C. M. Blockerette-ligated capture T7 amplified RT-PCR, a new method for determining flanking sequences. Mol. Therapy (in the press)

  38. Palmer, T. D., Markakis, E. A., Willhoite, A. R., Safar, F. & Gage, F. H. Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. J. Neurosci. 19, 8487–8497 (1999)

    Article  CAS  Google Scholar 

  39. Lee, S. H., Lumelsky, N., Studer, L., Auerbach, J. M. & McKay, R. D. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nature Biotechnol. 18, 675–679 (2000)

    Article  CAS  Google Scholar 

  40. Zambrowicz, B. P. et al. Disruption of overlapping transcripts in the ROSA beta geo 26 gene trap strain leads to widespread expression of beta-galactosidase in mouse embryos and hematopoietic cells. Proc. Natl Acad. Sci. USA 94, 3789–3794 (1997)

    Article  ADS  CAS  Google Scholar 

  41. Reinhardt, R. L., Khoruts, A., Merica, R., Zell, T. & Jenkins, M. K. Visualizing the generation of memory CD4 T cells in the whole body. Nature 401, 101–105 (2001)

    Article  ADS  Google Scholar 

  42. Weiss, M. J. & Orkin, S. H. GATA transcription factors: key regulators of hematopoiesis. Exp. Hematol. 23, 99–107 (1995)

    CAS  Google Scholar 

  43. Prochazka, M., Gaskins, H. R., Shultz, L. D. & Leiter, E. H. The nonobese diabetic scid mouse: model for spontaneous thymomagenesis associated with immunodeficiency. Proc. Natl Acad. Sci. USA 89, 3290–3294 (1992)

    Article  ADS  CAS  Google Scholar 

  44. Anderson, D. J., Gage, F. H. & Weissman, I. L. Can stem cells cross lineage boundaries? Nature Med. 7, 393–395 (2001)

    Article  CAS  Google Scholar 

  45. Terada, N. et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416, 542–545 (2002); advance online publication, 13 March 2002 (doi:10.1038/nature00730)

    Article  ADS  CAS  Google Scholar 

  46. Ying, Q. Y., Nichols, J., Evans, E. P. & Smith, A. G. Changing potency by spontaneous fusion. Nature 416, 545–548 (2002); advance online publication, 13 March 2002 (doi:10.1038/nature729)

    Article  ADS  CAS  Google Scholar 

  47. Rideout, W. M. et al. Generation of mice from wild-type and targeted ES cells by nuclear cloning. Nature Genet. 24, 109–110 (2000)

    Article  CAS  Google Scholar 

  48. Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J. & Campbell, K. H. Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813 (1997)

    Article  ADS  CAS  Google Scholar 

  49. Pear, W. S. et al. Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood 92, 3780–3792 (1998)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank M. Jenkins for technical support. This work was supported by NIH grants, the Michael J. Fox Foundation, the Children's Cancer Research Fund, the Tulloch Family Foundation, and the McKnight Foundation. R.E.S., C.D.K., X.R.O.-G. and M.R. are supported by the NIH-MSTP programme at the University of Minnesota.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

C.M.V. is a consultant for MCL low liability company, Minneapolis.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Y., Jahagirdar, B., Reinhardt, R. et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41–49 (2002). https://doi.org/10.1038/nature00870

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00870

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing