Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Subnuclear shuttling of human telomerase induced by transformation and DNA damage

Abstract

The telomerase ribonucleoprotein complex caps chromosome ends by adding telomeric repeats. Here we show that catalytically active human telomerase has a regulated intranuclear localization that is dependent on the cell-cycle stage, transformation and DNA damage. In primary cell lines, low expression of a fusion protein of green fluorescent protein and telomerase reverse transcriptase (GFP–hTERT) increases telomerase activity and stabilizes the maintenance of telomere length. Confocal microscopy shows that the release of telomerase to the nucleoplasm from sequestration at nucleolar sites is enhanced at the expected time of telomere replication. By contrast, in tumour and transformed cells, there is an almost complete dissociation of telomerase from nucleoli at all stages of the cell cycle. Transfection of the simian virus 40 genome into a primary cell line is sufficient to mobilize telomerase from nucleoli to the nucleoplasm. Conversely, ionizing radiation induces the reassociation of telomerase with nucleoli in both primary and transformed cells. These findings show that transformation and DNA damage have opposite effects on the cellular regulation of active telomerase, affecting the enzyme's access to both telomeric and nontelomeric substrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of GFP–hTERT in human fibroblasts.
Figure 2: Cell-cycle-dependent association of GFP–hTERT with nucleoli in primary cells.
Figure 3: Nucleolar exclusion pattern of GFP–hTERT in transformed cells.
Figure 4: Conversion of telomerase nucleolar association to nucleolar exclusion without crisis.
Figure 5: Enhanced nucleolar association after DNA damage.

Similar content being viewed by others

References

  1. McEachern, M. J., Krauskopf, A. & Blackburn, E. H. Annu. Rev. Genet. 34, 331–358 (2000).

    Article  CAS  Google Scholar 

  2. Blackburn, E. H. Nature Struct. Biol. 7, 847–850 (2000).

    Article  CAS  Google Scholar 

  3. Stewart, S. A. & Weinberg, R. A. Semin. Cancer Biol. 10, 399–406 (2000).

    Article  CAS  Google Scholar 

  4. Shay, J. W. & Bacchetti, S. Eur. J. Cancer 33, 787–791 (1997).

    Article  CAS  Google Scholar 

  5. Mitchell, J. R. & Collins, K. Oncogene 21, 564–579 (2002).

    Article  Google Scholar 

  6. Counter, C. M. et al. Proc. Natl Acad. Sci. USA 95, 14723–14728 (1998).

    Article  CAS  Google Scholar 

  7. Mitchell, J. R., Wood, E. & Collins, K. Nature 402, 551–555 (1999).

    Article  CAS  Google Scholar 

  8. Newport, J. & Yan, H. Curr. Opin. Cell Biol. 8, 365–368 (1996).

    Article  CAS  Google Scholar 

  9. Griffith, J. D. et al. Cell 97, 503–514 (1999).

    Article  CAS  Google Scholar 

  10. Holt, S. E., Aisner, D. L., Shay, J. W. & Wright, W. E. Proc. Natl Acad. Sci. USA 94, 10687–10692 (1997).

    Article  CAS  Google Scholar 

  11. Bryan, T. M., Englezou, A., Gupta, J., Bacchetti, S. & Reddel, R. R. EMBO J. 14, 4240–4248 (1995).

    Article  CAS  Google Scholar 

  12. Wright, W. E., Pereira-Smith, O. M. & Shay, J. W. Mol. Cell. Biol. 9, 3088–3092 (1989).

    Article  CAS  Google Scholar 

  13. Marcand, S., Brevet, V., Mann, C. & Gilson, E. Curr. Biol. 10, 487–490 (2000).

    Article  CAS  Google Scholar 

  14. Zhu, J., Wang, H., Bishop, J. M. & Blackburn, E. H. Proc. Natl Acad. Sci. USA 96, 3723–3728 (1999).

    Article  CAS  Google Scholar 

  15. O'Hare, M. J. et al. Proc. Natl Acad. Sci. USA 98, 646–651 (2001).

    Article  CAS  Google Scholar 

  16. Sprung, C. N., Reynolds, G. E., Jasin, M. & Murnane, J. P. Proc. Natl Acad. Sci. USA 96, 6781–6786 (1999).

    Article  CAS  Google Scholar 

  17. Lusky, M. & Botchan, M. Nature 293, 79–81 (1981).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Schichnes, S. Ruzin and H. Nolla for technical help; P. Kaminker, J. Campisi, J. Shay, W. Wright and M. Botchan for reagents; and members of the Collins laboratory for discussion and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen Collins.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary figures and table

Figure S1 (PDF 644 kb)

Figure S2

Figure S3

Table S1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, J., Kusdra, L. & Collins, K. Subnuclear shuttling of human telomerase induced by transformation and DNA damage. Nat Cell Biol 4, 731–736 (2002). https://doi.org/10.1038/ncb846

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb846

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing