Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of Disease: prediction and prevention of breast cancer—cellular and molecular interactions

Abstract

Breast cancer is the most prevalent female cancer in the world and its incidence is increasing, largely because of the Western lifestyle. There is a need, not only to predict women who will develop the disease, but also to apply drug and lifestyle measures in order to prevent the disease. Current risk prediction models are based on combinations of risk factors and have good predictive but low discriminatory power. New risk prediction methods might come from examination of single nucleotide polymorphisms in several genes or from an increased knowledge of the molecular and cellular biology of the breast, particularly with respect to aberrant gene expression and protein synthesis. These methods might also determine new targets for preventive agents and lifestyle change. Many potential preventive measures are available and some have been successful. New approaches are required, however, not only to prevent the disease but to devise methods for their assessment that do not require very large and expensive clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Prediction, prevention and biology of breast cancer.
Figure 2: Overview of the many complex risk factors associated with breast cancer.
Figure 3: Anatomy and changes within the breast with age.
Figure 4: Estimated relative risk of breast cancer according to various endocrine and reproductive-related factors.
Figure 5: Forrest plot of interventions that reduce the risk of breast cancer.
Figure 6: Cellular interactions between different cell types within human breast tissue.
Figure 7: Molecular targets of potential preventive strategies.

Similar content being viewed by others

References

  1. Parkin DM et al. (2005) Global cancer statistics, 2002. CA Cancer J Clin 55: 74–108

    Article  PubMed  Google Scholar 

  2. Cuzick J et al. (2003) Overview of the main outcomes in breast-cancer prevention trials. Lancet 361: 296–300

    Article  CAS  PubMed  Google Scholar 

  3. Howard BA and Gusterson BA (2000) Human breast development. J Mammary Gland Biol Neoplasia 5: 119–137

    Article  CAS  PubMed  Google Scholar 

  4. Keeling JW et al. (2000) Oestrogen receptor alpha in female fetal, infant, and child mammary tissue. J Pathol 191: 449–451

    Article  CAS  PubMed  Google Scholar 

  5. Going JJ and Moffat DF (2004) Escaping from Flatland: clinical and biological aspects of human mammary duct anatomy in three dimensions. J Pathol 203: 538–544

    Article  PubMed  Google Scholar 

  6. Hutson SW et al. (1985) Morphometric studies of age related changes in normal human breast and their significance for evolution of mammary cancer. J Clin Pathol 38: 281–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brisson J et al. (1988) Mammographic parenchymal features and breast cancer in the breast cancer detection demonstration project. J Natl Cancer Inst 80: 1534–1540

    Article  CAS  PubMed  Google Scholar 

  8. Frantz VK et al. (1951) Incidence of chronic cystic disease in so-called “normal breasts”; a study based on 225 postmortem examinations. Cancer 4: 762–783

    Article  CAS  PubMed  Google Scholar 

  9. Sandison AT (1962) An autopsy study of the adult human breast: with special reference to proliferative epithelial changes of importance in the pathology of the breast. Natl Cancer Inst Monogr 4: 1–145

    CAS  PubMed  Google Scholar 

  10. Freedman AN et al. (2005) Cancer risk prediction models: a workshop on development, evaluation, and application. J Natl Cancer Inst 97: 715–723

    Article  PubMed  Google Scholar 

  11. Rockhill B et al. (2001) Validation of the Gail et al. model of breast cancer risk prediction and implications for chemoprevention. J Natl Cancer Inst 93: 358–366

    Article  CAS  PubMed  Google Scholar 

  12. Amir E et al. (2003) Evaluation of breast cancer risk assessment packages in the family history evaluation and screening programme. J Med Genet 40: 807–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wald NJ et al. (1999) When can a risk factor be used as a worthwhile screening test? BMJ 319: 1562–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Boyd NF et al. (1998) Mammographic densities and breast cancer risk. Cancer Epidemiol Biomarkers Prev 7: 1133–1144

    CAS  PubMed  Google Scholar 

  15. Huang Z et al. (1997) Dual effects of weight and weight gain on breast cancer risk. JAMA 278: 1407–1411

    Article  CAS  PubMed  Google Scholar 

  16. Key TJ et al. (2003) Body mass index, serum sex hormones, and breast cancer risk in postmenopausal women. J Natl Cancer Inst 95: 1218–1226

    Article  CAS  PubMed  Google Scholar 

  17. Pharoah PD et al. (2002) Polygenic susceptibility to breast cancer and implications for prevention. Nat Genet 31: 33–36

    Article  CAS  PubMed  Google Scholar 

  18. Peto J and Mack TM (2000) High constant incidence in twins and other relatives of women with breast cancer. Nat Genet 26: 411–414

    Article  CAS  PubMed  Google Scholar 

  19. Nielsen M (1989) Autopsy studies of the occurrence of cancerous, atypical and benign epithelial lesions in the female breast. APMIS 10 (Suppl): 1–56

    CAS  Google Scholar 

  20. Pharoah PD et al. (2004) Association studies for finding cancer-susceptibility genetic variants. Nat Rev Cancer 4: 850–860

    Article  CAS  PubMed  Google Scholar 

  21. Martino S et al. (2004) Continuing outcomes relevant to Evista: breast cancer incidence in postmenopausal osteoporotic women in a randomized trial of raloxifene. J Natl Cancer Inst 96: 1751–1761

    Article  CAS  PubMed  Google Scholar 

  22. Howell A et al. (2005) Results of the ATAC (Arimidex, Tamoxifen, Alone or in Combination) trial after completion of 5 years' adjuvant treatment for breast cancer. Lancet 365: 60–62

    Article  CAS  PubMed  Google Scholar 

  23. Olson JE et al. (2004) Bilateral oophorectomy and breast cancer risk reduction among women with a family history. Cancer Detect Prev 28: 357–360

    Article  PubMed  Google Scholar 

  24. Harvie M et al. (2005) Association of gain and loss of weight before and after menopause with risk of postmenopausal breast cancer in the Iowa women's health study. Cancer Epidemiol Biomarkers Prev 14: 656–661

    Article  PubMed  Google Scholar 

  25. Zhu Z et al. (2005) 2-deoxyglucose as an energy restriction mimetic agent: effects on mammary carcinogenesis and on mammary tumor cell growth in vitro. Cancer Res 65: 7023–7030

    Article  CAS  PubMed  Google Scholar 

  26. Ingram DK et al. (2004) Development of calorie restriction mimetics as a prolongevity strategy. Ann NY Acad Sci 1019: 412–423

    Article  CAS  PubMed  Google Scholar 

  27. McTiernan A et al. (2003) Recreational physical activity and the risk of breast cancer in postmenopausal women: the Women's Health Initiative Cohort Study. JAMA 290: 1331–1336

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Y et al. (2005) Use of nonsteroidal antiinflammatory drugs and risk of breast cancer: the Case-Control Surveillance Study revisited. Am J Epidemiol 162: 165–170

    Article  PubMed  Google Scholar 

  29. Kochhar R et al. (2005) Statins to reduce breast cancer risk: a case control study in US female veterans. In Proceedings of the American Society of Clinical Oncology Annual Meeting: 2005 May 13–17; Florida. ASCO

    Google Scholar 

  30. Bresalier RS et al. (2005) Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N Engl J Med 352: 1092–1102

    Article  CAS  PubMed  Google Scholar 

  31. Cook NR et al. (2005) Low-dose aspirin in the primary prevention of cancer: the Women's Health Study: a randomized controlled trial. JAMA 294: 47–55

    Article  CAS  PubMed  Google Scholar 

  32. Manson MM et al. (2005) Innovative agents in cancer prevention. Recent Results Cancer Res 166: 257–275

    Article  CAS  PubMed  Google Scholar 

  33. Shen Q and Brown PH (2003) Novel agents for the prevention of breast cancer: targeting transcription factors and signal transduction pathways. J Mammary Gland Biol Neoplasia 8: 45–73

    Article  PubMed  Google Scholar 

  34. Wiseman BS and Werb Z (2002) Stromal effects on mammary gland development and breast cancer. Science 296: 1046–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Couldrey C et al. (2002) Adipose tissue: a vital in vivo role in mammary gland development but not differentiation. Dev Dyn 223: 459–468

    Article  PubMed  Google Scholar 

  36. Hu X et al. (2002) Leptin—a growth factor in normal and malignant breast cells and for normal mammary gland development. J Natl Cancer Inst 94: 1704–1711

    Article  CAS  PubMed  Google Scholar 

  37. Lewis MT et al. (1999) Defects in mouse mammary gland development caused by conditional haploinsufficiency of Patched-1. Development 126: 5181–5193

    CAS  PubMed  Google Scholar 

  38. Lewis MT (2001) Hedgehog signaling in mouse mammary gland development and neoplasia. J Mammary Gland Biol Neoplasia 6: 53–66

    Article  CAS  PubMed  Google Scholar 

  39. Lai EC (2004) Notch signaling: control of cell communication and cell fate. Development 131: 965–973

    Article  CAS  PubMed  Google Scholar 

  40. Gallahan D and Callahan R (1997) The mouse mammary tumor associated gene INT3 is a unique member of the NOTCH gene family (NOTCH4). Oncogene 14: 1883–1890

    Article  CAS  PubMed  Google Scholar 

  41. Pece S et al. (2004) Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis. J Cell Biol 167: 215–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Barcellos-Hoff MH and Ravani SA (2000) Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res 60: 1254–1260

    CAS  PubMed  Google Scholar 

  43. Maffini MV et al. (2004) The stroma as a crucial target in rat mammary gland carcinogenesis. J Cell Sci 117: 1495–1502

    Article  CAS  PubMed  Google Scholar 

  44. Wellings SR et al. (1975) An atlas of subgross pathology of the human breast with special reference to possible precancerous lesions. J Natl Cancer Inst 55: 231–273

    CAS  PubMed  Google Scholar 

  45. Lee S et al. (2005) Biological features and xenograft models of a very early human premalignant breast lesion. Breast Cancer Res 7 (Suppl 2): S17

    Google Scholar 

  46. Clarke RB et al. (1997) Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res 57: 4987–4991

    CAS  PubMed  Google Scholar 

  47. Allred DC et al. (2004) The origins of estrogen receptor alpha-positive and estrogen receptor alpha-negative human breast cancer. Breast Cancer Res 6: 240–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Clarke RB et al. (2005) A putative human breast stem cell population is enriched for steroid receptor-positive cells. Dev Biol 277: 443–456

    Article  CAS  PubMed  Google Scholar 

  49. Dontu G et al. (2004) Breast cancer, stem/progenitor cells and the estrogen receptor. Trends Endocrinol Metab 15: 193–197

    Article  CAS  PubMed  Google Scholar 

  50. Kennedy DO et al. (2005) DNA repair capacity of lymphoblastoid cell lines from sisters discordant for breast cancer. J Natl Cancer Inst 97: 127–132

    Article  CAS  PubMed  Google Scholar 

  51. Scott D (2004) Chromosomal radiosensitivity and low penetrance predisposition to cancer. Cytogenet Genome Res 104: 365–370

    Article  CAS  PubMed  Google Scholar 

  52. Borresen-Dale AL and Sharma P (2005) Expression profiling of peripheral blood cells for early detection. Breast Cancer Res 7 (Suppl 2): S8

    Google Scholar 

  53. Gauthier ML et al. (2005) p38 regulates cyclooxygenase-2 in human mammary epithelial cells and is activated in premalignant tissue. Cancer Res 65: 1792–1799

    Article  CAS  PubMed  Google Scholar 

  54. Allan DJ et al. (1992) Reduction in apoptosis relative to mitosis in histologically normal epithelium accompanies fibrocystic change and carcinoma of the premenopausal human breast. J Pathol 167: 25–32

    Article  CAS  PubMed  Google Scholar 

  55. Khan SA et al. (1999) The normal breast epithelium of women with breast cancer displays an aberrant response to estradiol. Cancer Epidemiol Biomarkers Prev 8: 867–872

    CAS  PubMed  Google Scholar 

  56. Hassan HI and Walker RA (2001) Altered expression of epidermal growth factor receptor in non-involved tissue of cancer-containing breasts. Breast 10: 318–324

    Article  CAS  PubMed  Google Scholar 

  57. Deng G et al. (1996) Loss of heterozygosity in normal tissue adjacent to breast carcinomas. Science 274: 2057–2059

    Article  CAS  PubMed  Google Scholar 

  58. Guo YP et al. (2001) Growth factors and stromal matrix proteins associated with mammographic densities. Cancer Epidemiol Biomarkers Prev 10: 243–248

    CAS  PubMed  Google Scholar 

  59. Tlsty TD et al. (2005) Epigenetic and genetic changes control tumorigenic phenotypes and occur in vivo in human mammary epithelia. In Proceedings of Keystone Symposium: The Role of Microenvironment in Tumor Induction and Progression: 2005 February 5–10; Banff. Silverthorne: Keystone Symposia

    Google Scholar 

  60. Parrinello S et al. (2005) Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. J Cell Sci 118: 485–496

    Article  CAS  PubMed  Google Scholar 

  61. Kuperwasser C et al. (2004) Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci USA 101: 4966–4971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Iyengar P et al. (2005) Adipocyte-derived collagen VI affects early mammary tumor progression in vivo, demonstrating a critical interaction in the tumor/stroma microenvironment. J Clin Invest 115: 1163–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Catalano S et al. (2004) Leptin induces, via ERK1/ERK2 signal, functional activation of estrogen receptor alpha in MCF-7 cells. J Biol Chem 279: 19908–19915

    Article  CAS  PubMed  Google Scholar 

  64. Coussens LM and Werb Z (2002) Inflammation and cancer. Nature 420: 860–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Weisberg SP et al. (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112: 1796–1808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Verlinden I et al. (2005) Parity-induced changes in global gene expression in the human mammary gland. Eur J Cancer Prev 14: 129–137

    Article  CAS  PubMed  Google Scholar 

  67. Perou CM et al. (2000) Molecular portraits of human breast tumours. Nature 406: 747–752

    Article  CAS  PubMed  Google Scholar 

  68. Allinen M et al. (2004) Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6: 17–32

    Article  CAS  PubMed  Google Scholar 

  69. Chang HY et al. (2005) Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc Natl Acad Sci USA 102: 3738–3743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shelton DN et al. (1999) Microarray analysis of replicative senescence. Curr Biol 9: 939–945

    Article  CAS  PubMed  Google Scholar 

  71. Clement K et al. (2004) Weight loss regulates inflammation-related genes in white adipose tissue of obese subjects. FASEB J 18: 1657–1669

    Article  CAS  PubMed  Google Scholar 

  72. Greten FR et al. (2004) IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118: 285–296

    Article  CAS  PubMed  Google Scholar 

  73. Karin M et al. (2002) NF-κB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2: 301–310

    Article  CAS  PubMed  Google Scholar 

  74. Luo Z et al. (2005) AMPK, the metabolic syndrome and cancer. Trends Pharmacol Sci 26: 69–76

    Article  CAS  PubMed  Google Scholar 

  75. Lamming DW et al. (2004) Small molecules that regulate lifespan: evidence for xenohormesis. Mol Microbiol 53: 1003–1009

    Article  CAS  PubMed  Google Scholar 

  76. Kalaitzidis D and Gilmore TD (2005) Transcription factor cross-talk: the estrogen receptor and NF-kappaB. Trends Endocrinol Metab 16: 46–52

    Article  CAS  PubMed  Google Scholar 

  77. deGraffenried LA et al. (2004) NF-kappa B inhibition markedly enhances sensitivity of resistant breast cancer tumor cells to tamoxifen. Ann Oncol 15: 885–890

    Article  CAS  PubMed  Google Scholar 

  78. Riggins RB et al. (2005) The nuclear factor kappa B inhibitor parthenolide restores ICI 182,780 (Faslodex; fulvestrant)-induced apoptosis in antiestrogen-resistant breast cancer cells. Mol Cancer Ther 4: 33–41

    Article  CAS  PubMed  Google Scholar 

  79. Kong G et al. (2005) The retinoid X receptor-selective retinoid, LGD1069, down-regulates cyclooxygenase-2 expression in human breast cells through transcription factor crosstalk: implications for molecular-based chemoprevention. Cancer Res 65: 3462–3469

    Article  CAS  PubMed  Google Scholar 

  80. Harper-Wynne C et al. (2002) Effects of the aromatase inhibitor letrozole on normal breast epithelial cell proliferation and metabolic indices in postmenopausal women: a pilot study for breast cancer prevention. Cancer Epidemiol Biomarkers Prev 11: 614–621

    CAS  PubMed  Google Scholar 

  81. Fabian CJ et al. (2005) Breast-tissue sampling for risk assessment and prevention. Endocr Relat Cancer 12: 185–213

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Howell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howell, A., Sims, A., Ong, K. et al. Mechanisms of Disease: prediction and prevention of breast cancer—cellular and molecular interactions. Nat Rev Clin Oncol 2, 635–646 (2005). https://doi.org/10.1038/ncponc0361

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncponc0361

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing