Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LAZ3, a novel zinc–finger encoding gene, is disrupted by recurring chromosome 3q27 translocations in human lymphomas

Abstract

We have shown previously that chromosomal translocations involving chromosome 3q27 and immunoglobulin gene regions are the third most common specific translocations in non–Hodgkin's lymphoma (NHL). We now report the isolation of a gene that is disrupted in two cases by t(3;14) and t(3;4) translocations. The gene (LAZ3) encodes a 79 kDa protein containing six zinc–finger motifs and sharing amino–terminal homology with several transcription factors including the Drosophila tramtrack and Broad–complex genes, both of which are developmental transcription regulators. LAZ3 is transcribed as a 3.8 kb message predominantly in normal adult skeletal muscle and in several NHL carrying 3q27 chromosomal defects. We suggest that it may act as a transcription regulator and play an important role in lymphomagenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rabbits, T.H. Translocations, master genes, and differences between the origins of acute and chronic leukemias. Cell 67, 641–644 (1991).

    Article  Google Scholar 

  2. Lewin, B. Oncogenic conversion by regulatory changes in transcription factors. Cell 64, 303–312 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Cleary, M.L. Oncogenic conversion of transcription factors by chromosomal translations. Cell 66, 619–622 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Nichols, J. & Nimer, D. Transcription factors, translocations, and leukemias. Blood 80, 2953–2963 (1992).

    CAS  PubMed  Google Scholar 

  5. Leder, P. et al. Translocations among antibody genes in human cancer. Science 222, 765–771 (1983).

    Article  CAS  PubMed  Google Scholar 

  6. Fukuhara, S., Rowley, J.D., Variakojis, D. & Golomb, H.M. Chromosome abnormalities in poorly differentiated lymphocytic lymphoma. Cancer Res. 39, 3119–3128 (1979).

    CAS  PubMed  Google Scholar 

  7. Manolova, Y., Manolov, Q., Kieler, J., Levan, A. & Klein, G. Genesis of the 14q+ marker in Burkitt's lymphoma. Hereditas 90, 5–10 (1979).

    Article  CAS  PubMed  Google Scholar 

  8. Lenoir, G.M., Preud'homme, J.L., Bernheim, A. & Berger, R. Correlation between immunoglobulin light chain expression and variant translation in Burkitt's lymphoma. Nature 298, 474–476 (1982).

    Article  CAS  PubMed  Google Scholar 

  9. Bastard, C. et al. Translocations involving band 3q27 and Ig gene regions in non-Hodgkin's lymphoma. Blood 79, 2527–2531 (1992).

    CAS  PubMed  Google Scholar 

  10. Deweindt, C. et al. Cloning of a breakpoint cluster region at band 3q27 involved in human non-Hodgkin's lymphoma. Genes Chrom. Cancer (in the press).

  11. Evans, R.M. & Hollenberg, S.M. Zinc fingers: gilt by association. Cell 52, 1–3 (1988).

    Article  CAS  PubMed  Google Scholar 

  12. Lichter, P., Bray, P., Ried, T., Dawid, I.B. & Ward, D.C. Clustering of C2-H2 zinc finger motif sequences within telomeric and fragile site regions of human chromosomes. Genomics 13, 999–1007 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Harrison, S.D. & Travers, A.A. The tramtrack gene encodes a Drosophila finger protein that interacts with the ftz transcriptional regulatory region and shows a novel embryonic expression pattern. EMBO J. 9, 207–216 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. DiBello, P.R., Withers, D.A., Bayer, C.A., Fristrom, J.W. & Guild, G.M. The Drosophila Broad-Complex encodes a family of related proteins containing zinc fingers. Genetics 129, 385–397 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Chardin, P., Courtois, G., Mattei, M.G. & Gisselbrecht, S. The KUP gene, located on human chromosome 14, encodes a protein with two distant zinc fingers. Nucl. Acids Res. 19, 1431–1436 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Koonin, E.V., Senkevich, T.G. & Chernos, V.I. A family of DNA virus genes that consists of fused portions of unrelated cellular genes. Trends Biochem. 17, 213–214 (1992).

    Article  CAS  Google Scholar 

  17. Read, D. & Manley, J. Alternative transcripts of the Drosophila tramtrack gene encode zinc finger proteins with distinct DNA binding specificities. EMBO J. 11, 1035–1044 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kakizuka, A. et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RARα with a novel putative transcription factor. Cell 66, 663–674 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. de Thé, H. et al. The PML-RARα fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66, 675–685 (1991).

    Article  PubMed  Google Scholar 

  20. Morishita, K. et al. Retroviral activation of a novel gene encoding a zinc finger protein in IL-3-dependent myeloid leukemia cell lines. Cell 54, 831–840 (1988).

    Article  CAS  PubMed  Google Scholar 

  21. Fichelson, S. et al. Evi-1 expression in leukemic patients with rearrangements of the 3q25-q28 chromosomal region. Leukemia 6, 93–99 (1992).

    CAS  PubMed  Google Scholar 

  22. McGuire, E.A. et al. The t(11 ;14)(p15;q11) in a T-cell acute lymphoblastic leukemia cell line activates multiple transcripts, including Ttg-1, a gene encoding a potential zinc finger protein. Molec. cell. Biol. 9, 2124–2132 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Djabali, M. et al. A trithorax-like gene is interrupted by chromosome 11q23 translocations in acute leukaemias. Nature Genet. 2, 113–118 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Tkachuk, D.C., Kohler, S. & Cleary, M.L. Involvement of a homolog of Drosophila Trithorax by 11q23 chromosomal translocations in acute leukemias. Cell 71, 691–700 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Gu, Y. et al. The t(4; 11) chromosome translocation of human acute leukemia fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene. Cell 71, 701–708 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Olson, E.N. MyoD family: a paradigm for development. Genes Dev. 4, 1454–1461 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. Ye, B.H., Rao, P.H., Chaganti, R.S.K. & Dalla-Favera, R. Cloning of bcl6, the locus involved in chromosome translocations affecting band 3q27 in B-cell lymphoma. Cancer Res. 53, 2732–2735 (1993).

    CAS  PubMed  Google Scholar 

  28. Baron, B.W. et al. Identification of the gene associated with the recurring chromosomal translocations t(3;14)(q27;q32) and t(3;22)(q27;q11) in B-cell lymphomas. Proc. natn Acad. Sci. U.S.A. 90, 5262–5266 (1993).

    Article  CAS  Google Scholar 

  29. Xiong, W.C. & Montell, C. tramtrack is a transcriptional repressor required for cell fate determination in the Drosophila eye. Genes Dev. 7, 1085–1096 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Adams, M.D., Kerlavage, A.R., Fields, C. & Venter, C.J. 3,400 new expressed sequence tags identify diversity of transcripts in human brain. Nature Genet. 4, 256–267 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerckaert, JP., Deweindt, C., Tilly, H. et al. LAZ3, a novel zinc–finger encoding gene, is disrupted by recurring chromosome 3q27 translocations in human lymphomas. Nat Genet 5, 66–70 (1993). https://doi.org/10.1038/ng0993-66

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0993-66

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing