Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Tissue-specific and reversible RNA interference in transgenic mice

Abstract

Genetically engineered mice provide powerful tools for understanding mammalian gene function. These models traditionally rely on gene overexpression from transgenes or targeted, irreversible gene mutation. By adapting the tetracycline (tet)-responsive system previously used for gene overexpression, we have developed a simple transgenic system to reversibly control endogenous gene expression using RNA interference (RNAi) in mice. Transgenic mice harboring a tet-responsive RNA polymerase II promoter driving a microRNA-based short hairpin RNA targeting the tumor suppressor Trp53 reversibly express short hairpin RNA when crossed with existing mouse strains expressing general or tissue-specific 'tet-on' or 'tet-off' transactivators. Reversible Trp53 knockdown can be achieved in several tissues, and restoring Trp53 expression in lymphomas whose development is promoted by Trp53 knockdown leads to tumor regression. By leaving the target gene unaltered, this approach permits tissue-specific, reversible regulation of endogenous gene expression in vivo, with potential broad application in basic biology and drug target validation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Germline transmission of a functional TRE-p53.1224 cassette.
Figure 2: Transgenic tet-transactivators can drive Trp53 knockdown in MEFs.
Figure 3: CMV-rtTA drives widespread and functional p53.1224 shRNA expression.
Figure 4: Trp53 knockdown protects thymocytes from radiation-induced apoptosis in vivo.
Figure 5: Liver-specific Trp53 knockdown in LAP-tTA/TRE-p53.1224 mice.
Figure 6: Tissue-specific Trp53 knockdown accelerates Eμ-Myc lymphomagenesis.
Figure 7: Restoring Trp53 expression in tumors causes apoptosis and regression.

Similar content being viewed by others

References

  1. Capecchi, M.R. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat. Rev. Genet. 6, 507–512 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Glaser, S., Anastassiadis, K. & Stewart, A.F. Current issues in mouse genome engineering. Nat. Genet. 37, 1187–1193 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Lewandoski, M. Conditional control of gene expression in the mouse. Nat. Rev. Genet. 2, 743–755 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Sage, J., Miller, A.L., Perez-Mancera, P.A., Wysocki, J.M. & Jacks, T. Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry. Nature 424, 223–228 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Loonstra, A. et al. Growth inhibition and DNA damage induced by Cre recombinase in mammalian cells. Proc. Natl. Acad. Sci. USA 98, 9209–9214 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Benson, J.D. et al. Validating cancer drug targets. Nature 441, 451–456 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Furth, P.A. et al. Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc. Natl. Acad. Sci. USA 91, 9302–9306 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kistner, A. et al. Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proc. Natl. Acad. Sci. USA 93, 10933–10938 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shin, M.K., Levorse, J.M., Ingram, R.S. & Tilghman, S.M. The temporal requirement for endothelin receptor-B signalling during neural crest development. Nature 402, 496–501 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Hochedlinger, K., Yamada, Y., Beard, C. & Jaenisch, R. Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121, 465–477 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Felsher, D.W. Reversibility of oncogene-induced cancer. Curr. Opin. Genet. Dev. 14, 37–42 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Wiznerowicz, M., Szulc, J. & Trono, D. Tuning silence: conditional systems for RNA interference. Nat. Methods 3, 682–688 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Xia, X.G., Zhou, H., Samper, E., Melov, S. & Xu, Z. Pol II-expressed shRNA knocks down Sod2 gene expression and causes phenotypes of the gene knockout in mice. PLoS Genet. 2, e10 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rao, M.K. et al. Tissue-specific RNAi reveals that WT1 expression in nurse cells controls germ cell survival and spermatogenesis. Genes Dev. 20, 147–152 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ventura, A. et al. Cre-lox-regulated conditional RNA interference from transgenes. Proc. Natl. Acad. Sci. USA 101, 10380–10385 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fritsch, L. et al. Conditional gene knock-down by CRE-dependent short interfering RNAs. EMBO Rep. 5, 178–182 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Coumoul, X., Shukla, V., Li, C., Wang, R.H. & Deng, C.X. Conditional knockdown of Fgfr2 in mice using Cre-LoxP induced RNA interference. Nucleic Acids Res. 33, e102 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yu, J. & McMahon, A.P. Reproducible and inducible knockdown of gene expression in mice. Genesis 44, 252–261 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Dickins, R.A. et al. Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nat. Genet. 37, 1289–1295 (2005).

    CAS  PubMed  Google Scholar 

  21. Stegmeier, F., Hu, G., Rickles, R.J., Hannon, G.J. & Elledge, S.J. A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc. Natl. Acad. Sci. USA 102, 13212–13217 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gordon, J.W., Scangos, G.A., Plotkin, D.J., Barbosa, J.A. & Ruddle, F.H. Genetic transformation of mouse embryos by microinjection of purified DNA. Proc. Natl. Acad. Sci. USA 77, 7380–7384 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sotillo, R. et al. Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell 11, 9–23 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Midgley, C.A. et al. Coupling between gamma irradiation, p53 induction and the apoptotic response depends upon cell type in vivo. J. Cell Sci. 108, 1843–1848 (1995).

    CAS  PubMed  Google Scholar 

  25. Lagos-Quintana, M. et al. Identification of tissue-specific microRNAs from mouse. Curr. Biol. 12, 735–739 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Kubicka, S. et al. p53 represses CAAT enhancer-binding protein (C/EBP)-dependent transcription of the albumin gene. A molecular mechanism involved in viral liver infection with implications for hepatocarcinogenesis. J. Biol. Chem. 274, 32137–32144 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Adams, J.M. et al. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 318, 533–538 (1985).

    Article  CAS  PubMed  Google Scholar 

  28. Hsu, B. et al. Evidence that c-myc mediated apoptosis does not require wild-type p53 during lymphomagenesis. Oncogene 11, 175–179 (1995).

    CAS  PubMed  Google Scholar 

  29. Schmitt, C.A., McCurrach, M.E., de Stanchina, E., Wallace-Brodeur, R.R. & Lowe, S.W. INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev. 13, 2670–2677 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hemann, M.T. et al. An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nat. Genet. 33, 396–400 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Felsher, D.W. & Bishop, J.M. Reversible tumorigenesis by MYC in hematopoietic lineages. Mol. Cell 4, 199–207 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Ceccarelli, A.V. & Rozengurt, N. Outbreak of hind limb paralysis in young CFW Swiss Webster mice. Comp. Med. 52, 171–175 (2002).

    CAS  PubMed  Google Scholar 

  33. Martins, C.P., Brown-Swigart, L. & Evan, G.I. Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 127, 1323–1334 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Kim, M. et al. Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell 125, 1269–1281 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Grimm, D. et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441, 537–541 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ventura, A. et al. Restoration of p53 function leads to tumour regression in vivo. Nature 445, 661–665 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Lowe, S.W., Schmitt, E.M., Smith, S.W., Osborne, B.A. & Jacks, T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362, 847–849 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Kuhnel, F. et al. NFkappaB mediates apoptosis through transcriptional activation of Fas (CD95) in adenoviral hepatitis. J. Biol. Chem. 275, 6421–6427 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Bujard (Heidelberg University) and D. Felsher (Stanford University) for LAP-tTA mice; D. Felsher for Eμ-tTA mice; R. Jaenisch (Whitehead Institute) for Rosa26-M2rtTA mice; H. Varmus, F. Cong and R. Sotillo (Memorial Sloan-Kettering Cancer Center) for CMV-rtTA mice and J. Adams (Walter and Eliza Hall Institute) for Eμ-Myc mice. Many thanks to L. Bianco, J. Coblentz and the Cold Spring Harbor Laboratory animal house staff; M. Lupu and C. Le at the Memorial Sloan-Kettering Cancer Center for MRI; M.S. Jiao, K. Manova and E. de Stanchina at Memorial Sloan-Kettering Cancer Center for histology and immunohistochemistry; members of the Hannon laboratory for advice on small RNA blotting and members of the Lowe laboratory for advice and discussions. This study was supported by a Mouse Models of Human Cancer Consortium grant, a program project grant from the National Cancer Institute and the Don Monti Memorial Research Foundation. K.M is a Robert and Theresa Lindsay Fellow and the Leeds scholar of the Watson School of Biological Sciences. D.J.B is an Engelhorn Scholar of the Watson School of Biological Sciences. V.K. is a Leukemia and Lymphoma Society Fellow.

Author information

Authors and Affiliations

Authors

Contributions

R.A.D. and S.W.L. designed the study; R.A.D., K.M., E.H., P.K.P, V.K. and L.Z. performed experiments; S.Y.K. performed pronuclear injections; D.J.B. provided reagents; C.C.-C. supervised and interpreted histopathology; G.J.H. and S.W.L. supervised experiments and data interpretation and R.A.D. and S.W.L. wrote the paper.

Corresponding author

Correspondence to Scott W Lowe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Germline transmission of a functional TRE-p16/p19.478 transgene. (PDF 364 kb)

Supplementary Fig. 2

Dose-response analysis of cultured thymocytes to radiation-induced apoptosis. (PDF 22 kb)

Supplementary Fig. 3

LAP-tTA drives reversible p53.1224 siRNA expression in the liver of different TRE-p53.1224 transgenic founder lines. (PDF 141 kb)

Supplementary Fig. 4

Accelerated lymphomagenesis is restricted to Eμ-myc; Eμ-tTA; TRE-p53.1224 mice. (PDF 30 kb)

Supplementary Fig. 5

Accelerated Eμ-myc lymphomagenesis using TRE-p53.1224 line D. (PDF 157 kb)

Supplementary Fig. 6

p53.1224 siRNA is undetectable in whole tissues of Eμ-tTA; TRE-p53.1224 mice. (PDF 164 kb)

Supplementary Fig. 7

Doxycycline restores p53 expression and causes apoptosis of Eμ-myc; Eμ-tTA; TREp53.1224 lymphoma cells. (PDF 423 kb)

Supplementary Table 1

Oligonucleotide sequences. (PDF 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dickins, R., McJunkin, K., Hernando, E. et al. Tissue-specific and reversible RNA interference in transgenic mice. Nat Genet 39, 914–921 (2007). https://doi.org/10.1038/ng2045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng2045

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing