Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases

Abstract

A common feature of many neurodegenerative diseases is the deposition of β-sheet-rich amyloid aggregates formed by proteins specific to these diseases. These protein aggregates are thought to cause neuronal dysfunction, directly or indirectly. Recent studies have strongly implicated cell-to-cell transmission of misfolded proteins as a common mechanism for the onset and progression of various neurodegenerative disorders. Emerging evidence also suggests the presence of conformationally diverse 'strains' of each type of disease protein, which may be another shared feature of amyloid aggregates, accounting for the tremendous heterogeneity within each type of neurodegenerative disease. Although there are many more questions to be answered, these studies have opened up new avenues for therapeutic interventions in neurodegenerative disorders.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potential mechanisms mediating cell-to-cell transmission of cytosolic protein aggregates.
Figure 2: Hypothetical model accounting for the stereotypical progression of pathologies in Alzheimer's and Parkinson's diseases.
Figure 3: Pathological strains underlying the divergence and convergence of neurodegenerative proteinopathies.

Similar content being viewed by others

References

  1. Glenner, G.G. & Wong, C.W. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120, 885–890 (1984).

    Article  CAS  PubMed  Google Scholar 

  2. Kosik, K.S., Joachim, C.L. & Selkoe, D.J. Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc. Natl. Acad. Sci. USA 83, 4044–4048 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Spillantini, M.G., Crowther, R.A., Jakes, R., Hasegawa, M. & Goedert, M. α-synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with Lewy bodies. Proc. Natl. Acad. Sci. USA 95, 6469–6473 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. DiFiglia, M. et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990–1993 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Bolton, D.C., McKinley, M.P. & Prusiner, S.B. Identification of a protein that purifies with the scrapie prion. Science 218, 1309–1311 (1982).

    Article  CAS  PubMed  Google Scholar 

  7. Ross, C.A. & Poirier, M.A. Protein aggregation and neurodegenerative disease. Nat. Med. 10 (suppl.), S10–S17 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Goedert, M. Filamentous nerve cell inclusions in neurodegenerative diseases: tauopathies and α-synucleinopathies. Phil. Trans. R. Soc. Lond. B 354, 1101–1118 (1999).

    Article  CAS  Google Scholar 

  9. Thorpe, J.R., Tang, H., Atherton, J. & Cairns, N.J. Fine structural analysis of the neuronal inclusions of frontotemporal lobar degeneration with TDP-43 proteinopathy. J. Neural Transm. 115, 1661–1671 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lin, W.L. & Dickson, D.W. Ultrastructural localization of TDP-43 in filamentous neuronal inclusions in various neurodegenerative diseases. Acta Neuropathol. 116, 205–213 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee, S.J., Desplats, P., Sigurdson, C., Tsigelny, I. & Masliah, E. Cell-to-cell transmission of non-prion protein aggregates. Nature reviews. Neurology 6, 702–706 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brundin, P., Melki, R. & Kopito, R. Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat. Rev. Mol. Cell Biol. 11, 301–307 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jucker, M. & Walker, L.C. Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders. Ann. Neurol. 70, 532–540 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Aguzzi, A., Sigurdson, C. & Heikenwaelder, M. Molecular mechanisms of prion pathogenesis. Annu. Rev. Pathol. 3, 11–40 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Volpicelli-Daley, L.A. et al. Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72, 57–71 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Luk, K.C. et al. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338, 949–953 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guo, J.L. & Lee, V.M. Seeding of normal tau by pathological tau conformers drives pathogenesis of Alzheimer-like tangles. J. Biol. Chem. 286, 15317–15331 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Clavaguera, F. et al. Transmission and spreading of tauopathy in transgenic mouse brain. Nat. Cell Biol. 11, 909–913 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Iba, M. et al. Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer's-like tauopathy. J. Neurosci. 33, 1024–1037 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Luk, K.C. et al. Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice. J. Exp. Med. 209, 975–986 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Masuda-Suzukake, M. et al. Prion-like spreading of pathological α-synuclein in brain. Brain 136, 1128–1138 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Stöhr, J. et al. Purified and synthetic Alzheimer's amyloid beta (Aβ) prions. Proc. Natl. Acad. Sci. USA 109, 11025–11030 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liu, L. et al. Trans-synaptic spread of tau pathology in vivo. PLoS ONE 7, e31302 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. de Calignon, A. et al. Propagation of tau pathology in a model of early Alzheimer's disease. Neuron 73, 685–697 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ulusoy, A. et al. Caudo-rostral brain spreading of α-synuclein through vagal connections. EMBO Mol. Med. 5, 1051–1059 (2013).

    Article  CAS  PubMed Central  Google Scholar 

  26. Haass, C. & Selkoe, D.J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid-β-peptide. Nat. Rev. Mol. Cell Biol. 8, 101–112 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Maeda, S. et al. Granular tau oligomers as intermediates of tau filaments. Biochemistry 46, 3856–3861 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Patterson, K.R. et al. Characterization of prefibrillar tau oligomers in vitro and in Alzheimer disease. J. Biol. Chem. 286, 23063–23076 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lasagna-Reeves, C.A. et al. Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau. Sci. Rep. 2, 700 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Silveira, J.R. et al. The most infectious prion protein particles. Nature 437, 257–261 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).

    Article  CAS  PubMed  Google Scholar 

  32. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging 24, 197–211 (2003).

    Article  PubMed  Google Scholar 

  33. Braak, H. et al. Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson's disease (preclinical and clinical stages). J. Neurol. 249, iii1–iii5 (2002).

    Article  Google Scholar 

  34. Kosaka, K., Tsuchiya, K. & Yoshimura, M. Lewy body disease with and without dementia: a clinicopathological study of 35 cases. Clin. Neuropathol. 7, 299–305 (1988).

    CAS  PubMed  Google Scholar 

  35. Thal, D.R., Rub, U., Orantes, M. & Braak, H. Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58, 1791–1800 (2002).

    Article  PubMed  Google Scholar 

  36. Brettschneider, J. et al. Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann. Neurol. 74, 20–38 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Glass, C.K., Saijo, K., Winner, B., Marchetto, M.C. & Gage, F.H. Mechanisms underlying inflammation in neurodegeneration. Cell 140, 918–934 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Braak, H. & Del Tredici, K. Alzheimer's pathogenesis: is there neuron-to-neuron propagation? Acta Neuropathol. 121, 589–595 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Friedhoff, P., Schneider, A., Mandelkow, E.M. & Mandelkow, E. Rapid assembly of Alzheimer-like paired helical filaments from microtubule-associated protein tau monitored by fluorescence in solution. Biochemistry 37, 10223–10230 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Wood, S.J. et al. α-synuclein fibrillogenesis is nucleation-dependent: implications for the pathogenesis of Parkinson's disease. J. Biol. Chem. 274, 19509–19512 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Meyer-Luehmann, M. et al. Exogenous induction of cerebral β-amyloidogenesis is governed by agent and host. Science 313, 1781–1784 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Clavaguera, F. et al. Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc. Natl. Acad. Sci. USA 110, 9535–9540 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wu, J.W. et al. small misfolded tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons. J. Biol. Chem. 288, 1856–1870 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Freundt, E.C. et al. Neuron-to-neuron transmission of α-synuclein fibrils through axonal transport. Ann. Neurol. 72, 517–524 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tapiola, T. et al. Cerebrospinal fluid β-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain. Arch. Neurol. 66, 382–389 (2009).

    Article  PubMed  Google Scholar 

  46. Mollenhauer, B. et al. Total CSF α-synuclein is lower in de novo Parkinson patients than in healthy subjects. Neurosci. Lett. 532, 44–48 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. van Dijk, K.D. et al. Reduced α-synuclein levels in cerebrospinal fluid in Parkinson's disease are unrelated to clinical and imaging measures of disease severity. Eur. J. Neurol. doi:10.1111/ene.12176 (2013).

  48. Yamada, K. et al. In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human tau transgenic mice. J. Neurosci. 31, 13110–13117 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Emmanouilidou, E. et al. Assessment of α-synuclein secretion in mouse and human brain parenchyma. PLoS ONE 6, e22225 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Emmanouilidou, E. et al. Cell-produced α-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J. Neurosci. 30, 6838–6851 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Danzer, K.M. et al. Exosomal cell-to-cell transmission of α-synuclein oligomers. Mol. Neurodegener. 7, 42 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Saman, S. et al. Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. J. Biol. Chem. 287, 3842–3849 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Vella, L.J. et al. Packaging of prions into exosomes is associated with a novel pathway of PrP processing. J. Pathol. 211, 582–590 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Pooler, A.M., Phillips, E.C., Lau, D.H., Noble, W. & Hanger, D.P. Physiological release of endogenous tau is stimulated by neuronal activity. EMBO Rep. 14, 389–394 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kfoury, N., Holmes, B.B., Jiang, H., Holtzman, D.M. & Diamond, M.I. Trans-cellular propagation of tau aggregation by fibrillar species. J. Biol. Chem. 287, 19440–19451 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ren, P.H. et al. Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nat. Cell Biol. 11, 219–225 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Münch, C., O'Brien, J. & Bertolotti, A. Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells. Proc. Natl. Acad. Sci. USA 108, 3548–3553 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Frost, B., Jacks, R.L. & Diamond, M.I. Propagation of tau misfolding from the outside to the inside of a cell. J. Biol. Chem. 284, 12845–12852 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Holmes, B.B. et al. Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. Proc. Natl. Acad. Sci. USA doi:10.1073/pnas.1301440110 (2013).

  60. Hansen, C. et al. α-synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J. Clin. Invest. 121, 715–725 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Desplats, P. et al. Inclusion formation and neuronal cell death through neuron-to-neuron transmission of α-synuclein. Proc. Natl. Acad. Sci. USA 106, 13010–13015 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Guo, J.L. & Lee, V.M. Neurofibrillary tangle-like tau pathology induced by synthetic tau fibrils in primary neurons over-expressing mutant tau. FEBS Lett. 587, 717–723 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gousset, K. et al. Prions hijack tunnelling nanotubes for intercellular spread. Nat. Cell Biol. 11, 328–336 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Dietzschold, B. et al. Differences in cell-to-cell spread of pathogenic and apathogenic rabies virus in vivo and in vitro. J. Virol. 56, 12–18 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Cearley, C.N. et al. Expanded repertoire of AAV vector serotypes mediate unique patterns of transduction in mouse brain. Mol. Ther. 16, 1710–1718 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Cearley, C.N. & Wolfe, J.H. A single injection of an adeno-associated virus vector into nuclei with divergent connections results in widespread vector distribution in the brain and global correction of a neurogenetic disease. J. Neurosci. 27, 9928–9940 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Summerford, C. & Samulski, R.J. Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J. Virol. 72, 1438–1445 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Thoulouze, M.I. et al. The neural cell adhesion molecule is a receptor for rabies virus. J. Virol. 72, 7181–7190 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Weissmann, C., Enari, M., Klohn, P.C., Rossi, D. & Flechsig, E. Transmission of prions. Proc. Natl. Acad. Sci. USA 99 (suppl. 4), 16378–16383 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Irwin, D.J. et al. Evaluation of potential infectivity of Alzheimer and Parkinson disease proteins in recipients of cadaver-derived human growth hormone. JAMA Neurol. 70, 462–468 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Brown, P., Gajdusek, D.C., Gibbs, C.J. Jr. & Asher, D.M. Potential epidemic of Creutzfeldt-Jakob disease from human growth hormone therapy. N. Engl. J. Med. 313, 728–731 (1985).

    Article  CAS  PubMed  Google Scholar 

  72. Eisele, Y.S. et al. Peripherally applied Aβ-containing inoculates induce cerebral β-amyloidosis. Science 330, 980–982 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kimberlin, R.H. & Walker, C.A. Pathogenesis of mouse scrapie: effect of route of inoculation on infectivity titres and dose-response curves. J. Comp. Pathol. 88, 39–47 (1978).

    Article  CAS  PubMed  Google Scholar 

  74. Aguzzi, A. & Calella, A.M. Prions: protein aggregation and infectious diseases. Physiol. Rev. 89, 1105–1152 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Will, R.G. Acquired prion disease: iatrogenic CJD, variant CJD, kuru. Br. Med. Bull. 66, 255–265 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Braak, H. & Del Tredici, K. Neuroanatomy and pathology of sporadic Parkinson's disease. Adv. Anat. Embryol. Cell Biol. 201, 1–119 (2009).

    PubMed  Google Scholar 

  77. Iwai, A. et al. The precursor protein of non-Aβ component of Alzheimer's disease amyloid is a presynaptic protein of the central nervous system. Neuron 14, 467–475 (1995).

    Article  CAS  PubMed  Google Scholar 

  78. Prusiner, S.B. Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144 (1982).

    Article  CAS  PubMed  Google Scholar 

  79. Wang, F., Wang, X., Yuan, C.G. & Ma, J. Generating a prion with bacterially expressed recombinant prion protein. Science 327, 1132–1135 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Colby, D.W. et al. Design and construction of diverse mammalian prion strains. Proc. Natl. Acad. Sci. USA 106, 20417–20422 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Makarava, N. et al. Recombinant prion protein induces a new transmissible prion disease in wild-type animals. Acta Neuropathol. 119, 177–187 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Goedert, M. et al. Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans. Nature 383, 550–553 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. Westaway, D. et al. Degeneration of skeletal muscle, peripheral nerves, and the central nervous system in transgenic mice overexpressing wild-type prion proteins. Cell 76, 117–129 (1994).

    Article  CAS  PubMed  Google Scholar 

  84. Hsiao, K.K. et al. Serial transmission in rodents of neurodegeneration from transgenic mice expressing mutant prion protein. Proc. Natl. Acad. Sci. USA 91, 9126–9130 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hill, A.F. & Collinge, J. Subclinical prion infection. Trends Microbiol. 11, 578–584 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Brandner, S. et al. Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379, 339–343 (1996).

    Article  CAS  PubMed  Google Scholar 

  87. Sandberg, M.K., Al-Doujaily, H., Sharps, B., Clarke, A.R. & Collinge, J. Prion propagation and toxicity in vivo occur in two distinct mechanistic phases. Nature 470, 540–542 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Arriagada, P.V., Growdon, J.H., Hedley-Whyte, E.T. & Hyman, B.T. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease. Neurology 42, 631–639 (1992).

    Article  CAS  PubMed  Google Scholar 

  89. Roberson, E.D. et al. Reducing endogenous tau ameliorates amyloid β-induced deficits in an Alzheimer's disease mouse model. Science 316, 750–754 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Ittner, L.M. et al. Dendritic function of tau mediates amyloid-β toxicity in Alzheimer's disease mouse models. Cell 142, 387–397 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Dahlgren, K.N. et al. Oligomeric and fibrillar species of amyloid-β peptides differentially affect neuronal viability. J. Biol. Chem. 277, 32046–32053 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Lambert, M.P. et al. Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA 95, 6448–6453 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Walsh, D.M. et al. Naturally secreted oligomers of amyloid-β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535–539 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Wang, H.W. et al. Soluble oligomers of β-amyloid (1–42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res. 924, 133–140 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Cohen, S.I. et al. Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism. Proc. Natl. Acad. Sci. USA 110, 9758–9763 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ding, T.T., Lee, S.J., Rochet, J.C. & Lansbury, P.T. Jr. Annular α-synuclein protofibrils are produced when spherical protofibrils are incubated in solution or bound to brain-derived membranes. Biochemistry 41, 10209–10217 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Lashuel, H.A. et al. α-Synuclein, especially the Parkinson's disease-associated mutants, forms pore-like annular and tubular protofibrils. J. Mol. Biol. 322, 1089–1102 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Winner, B. et al. In vivo demonstration that α-synuclein oligomers are toxic. Proc. Natl. Acad. Sci. USA 108, 4194–4199 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Karpinar, D.P. et al. Pre-fibrillar α-synuclein variants with impaired β-structure increase neurotoxicity in Parkinson's disease models. EMBO J. 28, 3256–3268 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tanik, S.A., Schultheiss, C.E., Volpicelli-Daley, L.A., Brunden, K.R. & Lee, V.M. Lewy body-like α-synuclein aggregates resist degradation and impair macroautophagy. J. Biol. Chem. 288, 15194–15210 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wittmann, C.W. et al. Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science 293, 711–714 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Yoshiyama, Y. et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53, 337–351 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. SantaCruz, K. et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science 309, 476–481 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Aguzzi, A., Heikenwalder, M. & Polymenidou, M. Insights into prion strains and neurotoxicity. Nat. Rev. Mol. Cell Biol. 8, 552–561 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Aoyagi, H., Hasegawa, M. & Tamaoka, A. Fibrillogenic nuclei composed of P301L mutant tau induce elongation of P301L tau but not wild-type tau. J. Biol. Chem. 282, 20309–20318 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Yonetani, M. et al. Conversion of wild-type α-synuclein into mutant-type fibrils and its propagation in the presence of A30P mutant. J. Biol. Chem. 284, 7940–7950 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Furukawa, Y., Kaneko, K., Yamanaka, K. & Nukina, N. Mutation-dependent polymorphism of Cu,Zn-superoxide dismutase aggregates in the familial form of amyotrophic lateral sclerosis. J. Biol. Chem. 285, 22221–22231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Guo, J.L. et al. Distinct α-synuclein strains differentially promote tau inclusions in neurons. Cell 154, 103–117 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Petkova, A.T. et al. Self-propagating, molecular-level polymorphism in Alzheimer's β-amyloid fibrils. Science 307, 262–265 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Nekooki-Machida, Y. et al. Distinct conformations of in vitro and in vivo amyloids of huntingtin-exon1 show different cytotoxicity. Proc. Natl. Acad. Sci. USA 106, 9679–9684 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Heilbronner, G. et al. Seeded strain-like transmission of β-amyloid morphotypes in APP transgenic mice. EMBO Rep. 14, 1017–1022 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Morozova, O.A., March, Z.M., Robinson, A.S. & Colby, D.W. Conformational features of tau fibrils from Alzheimer's disease brain are faithfully propagated by unmodified recombinant protein. Biochemistry 52, 6960–6967 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Tolnay, M. & Probst, A. The neuropathological spectrum of neurodegenerative tauopathies. IUBMB Life 55, 299–305 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Dickson, D.W. Neuropathologic differentiation of progressive supranuclear palsy and corticobasal degeneration. J. Neurol. 246 (suppl. 2), II6–II15 (1999).

    Article  PubMed  Google Scholar 

  115. Mayeux, R. et al. A population-based investigation of Parkinson's disease with and without dementia—relationship to age and gender. Arch. Neurol. 49, 492–497 (1992).

    Article  CAS  PubMed  Google Scholar 

  116. Morris, J.C., Drazner, M., Fulling, K., Grant, E.A. & Goldring, J. Clinical and pathological aspects of parkinsonism in Alzheimer's disease. A role for extranigral factors? Arch. Neurol. 46, 651–657 (1989).

    Article  CAS  PubMed  Google Scholar 

  117. Galpern, W.R. & Lang, A.E. Interface between tauopathies and synucleinopathies: a tale of two proteins. Ann. Neurol. 59, 449–458 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Gidalevitz, T., Ben-Zvi, A., Ho, K.H., Brignull, H.R. & Morimoto, R.I. Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science 311, 1471–1474 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Galloway, P.G., Bergeron, C. & Perry, G. The presence of tau distinguishes Lewy bodies of diffuse Lewy body disease from those of idiopathic Parkinson disease. Neurosci. Lett. 100, 6–10 (1989).

    Article  CAS  PubMed  Google Scholar 

  120. Ishizawa, T., Mattila, P., Davies, P., Wang, D. & Dickson, D.W. Colocalization of tau and α-synuclein epitopes in Lewy bodies. J. Neuropathol. Exp. Neurol. 62, 389–397 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Lu, J.X. et al. Molecular structure of β-amyloid fibrils in Alzheimer's disease brain tissue. Cell 154, 1257–1268 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Korecka, J.A., Verhaagen, J. & Hol, E.M. Cell-replacement and gene-therapy strategies for Parkinson's and Alzheimer's disease. Regen. Med. 2, 425–446 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Kordower, J.H., Chu, Y., Hauser, R.A., Freeman, T.B. & Olanow, C.W. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson's disease. Nat. Med. 14, 504–506 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Li, J.Y. et al. Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation. Nat. Med. 14, 501–503 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Schenk, D.B., Seubert, P., Grundman, M. & Black, R. Aβ immunotherapy: lessons learned for potential treatment of Alzheimer's disease. Neurodegener. Dis. 2, 255–260 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Banks, W.A. et al. Passage of amyloid β protein antibody across the blood-brain barrier in a mouse model of Alzheimer's disease. Peptides 23, 2223–2226 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Couch, J.A. et al. Addressing safety liabilities of TfR bispecific antibodies that cross the blood-brain barrier. Sci. Transl. Med. 5, 183ra157 (2013).

    Article  CAS  Google Scholar 

  128. Caughey, B. & Lansbury, P.T. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26, 267–298 (2003).

    Article  CAS  PubMed  Google Scholar 

  129. Dobson, C.M. Protein folding and misfolding. Nature 426, 884–890 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Wolynes, P.G., Onuchic, J.N. & Thirumalai, D. Navigating the folding routes. Science 267, 1619–1620 (1995).

    Article  CAS  PubMed  Google Scholar 

  131. Li, J., Browning, S., Mahal, S.P., Oelschlegel, A.M. & Weissmann, C. Darwinian evolution of prions in cell culture. Science 327, 869–872 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. Ghaemmaghami, S. et al. Conformational transformation and selection of synthetic prion strains. J. Mol. Biol. 413, 527–542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Nonaka, T., Watanabe, S.T., Iwatsubo, T. & Hasegawa, M. Seeded aggregation and toxicity of α-synuclein and tau: cellular models of neurodegenerative diseases. J. Biol. Chem. 285, 34885–34898 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Luk, K.C. et al. Exogenous α-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc. Natl. Acad. Sci. USA 106, 20051–20056 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Chen, A.K. et al. Induction of amyloid fibrils by the C-terminal fragments of TDP-43 in amyotrophic lateral sclerosis. J. Am. Chem. Soc. 132, 1186–1187 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. Nonaka, T. et al. Prion-like properties of pathological TDP-43 aggregates from diseased brains. Cell Rep. 4, 124–134 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank J.Q. Trojanowski for critical reading of the manuscript. This study was supported by NIH/NIA grants AG17586, NS53488 (V.M.Y.L.), the Marian S. Ware Alzheimer Program, the Jeff and Anne Keefer Fund and the Parkinson Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia M Y Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, J., Lee, V. Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases. Nat Med 20, 130–138 (2014). https://doi.org/10.1038/nm.3457

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3457

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing