Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Disruption of the Fanconi anemia–BRCA pathway in cisplatin-sensitive ovarian tumors

Abstract

Ovarian tumor cells are often genomically unstable and hypersensitive to cisplatin. To understand the molecular basis for this phenotype, we examined the integrity of the Fanconi anemia–BRCA (FANC-BRCA) pathway in those cells. This pathway regulates cisplatin sensitivity and is governed by the coordinate activity of six genes associated with Fanconi anemia (FANCA, FANCC, FANCD2, FANCE, FANCF and FANCG) as well as BRCA1 and BRCA2 (FANCD1). Here we show that the FANC-BRCA pathway is disrupted in a subset of ovarian tumor lines. Mono-ubiquitination of FANCD2, a measure of the function of this pathway, and cisplatin resistance were restored by functional complementation with FANCF, a gene that is upstream in this pathway. FANCF inactivation in ovarian tumors resulted from methylation of its CpG island, and acquired cisplatin resistance correlated with demethylation of FANCF. We propose a model for ovarian tumor progression in which the initial methylation of FANCF is followed by FANCF demethylation and ultimately results in cisplatin resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of ovarian tumor cell lines with defects in the Fanconi anemia pathway.
Figure 2: The ovarian tumor cell line TOV-21G is deficient in FANCF.
Figure 3: DNA methylation of FANCF in ovarian tumor lines.
Figure 4: FANCF is reactivated by partial demethylation in the C13* cisplatin-resistant cell line.
Figure 5: Methylation of FANCF in primary ovarian tumors.

Similar content being viewed by others

References

  1. Landis, S.H. et al. Cancer statistics, 1999. CA Cancer J. Clin. 49, 8–31 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Orth, K. et al. Genetic instability in human ovarian cancer cell lines. Proc. Natl. Acad. Sci. USA 91, 9495–9499 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Auersperg, N., Edelson, M.I., Mok, S.C., Johnson, S.W. & Hamilton, T.C. The biology of ovarian cancer. Semin. Oncol. 25, 281–304 (1998).

    CAS  PubMed  Google Scholar 

  4. Harper, P., Marsh, D. & Zori, R. Current clinical practices for ovarian cancers. Semin. Oncol. 29, 3–6 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Husain, A. et al. Lisofylline sensitizes p53 mutant human ovarian carcinoma cells to the cytotoxic effects of cis-diamminedichloroplatinum (II). Gynecol. Oncol. 70, 17–22 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Joenje, H. & Patel, K.J. The emerging genetic and molecular basis of Fanconi anaemia. Nat. Rev. Genet. 2, 446–457 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Taniguchi, T. & D'Andrea, A.D. The Fanconi anemia protein, FANCE, promotes the nuclear accumulation of FANCC. Blood 100, 2457–2462 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Pace, P. et al. FANCE: the link between Fanconi anaemia complex assembly and activity. EMBO J. 21, 3414–3423 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Medhurst, A.L., Huber, P.A., Waisfisz, Q., de Winter, J.P. & Mathew, C.G. Direct interactions of the five known Fanconi anaemia proteins suggest a common functional pathway. Hum. Mol. Genet. 10, 423–429 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Garcia-Higuera, I. et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol. Cell 7, 249–262 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Taniguchi, T. et al. Convergence of the Fanconi anemia and ataxia telangiectasia signaling pathways. Cell 109, 459–472 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Howlett, N.G. et al. Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297, 606–609 (2002).

    CAS  PubMed  Google Scholar 

  13. Shimamura, A. et al. A novel diagnostic screen for defects in the Fanconi anemia pathway. Blood 100, 4649–4654 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. de Winter, J.P. et al. The Fanconi anaemia gene FANCF encodes a novel protein with homology to ROM. Nat. Genet. 24, 15–16 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Esteller, M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 21, 5427–5440 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Jones, P.A. & Laird, P.W. Cancer epigenetics comes of age. Nat. Genet. 21, 163–167 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Andrews, P.A. & Albright, K.D. Mitochondrial defects in cis-diamminedichloroplatinum(II)-resistant human ovarian carcinoma cells. Cancer Res. 52, 1895–1901 (1992).

    CAS  PubMed  Google Scholar 

  18. Krop, I.E. et al. HIN-1, a putative cytokine highly expressed in normal but not cancerous mammary epithelial cells. Proc. Natl. Acad. Sci. USA 98, 9796–9801 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Provencher, D.M. et al. Characterization of four novel epithelial ovarian cancer cell lines. In Vitro Cell. Dev. Biol. Anim. 36, 357–361 (2000).

    Article  CAS  Google Scholar 

  20. Wilson, A.P. Characterization of a cell line derived from the ascites of a patient with papillary serous cystadenocarcinoma of the ovary. J. Natl. Cancer Inst. 72, 513–521 (1984).

    CAS  PubMed  Google Scholar 

  21. Rahman, N. & Stratton, M.R. The genetics of breast cancer susceptibility. Annu. Rev. Genet. 32, 95–121 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Esteller, M. et al. Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J. Natl. Cancer Inst. 92, 564–569 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Hedenfalk, I. et al. Gene-expression profiles in hereditary breast cancer. N. Engl. J. Med. 344, 539–548 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Geisler, J.P., Hatterman-Zogg, M.A., Rathe, J.A. & Buller, R.E. Frequency of BRCA1 dysfunction in ovarian cancer. J. Natl. Cancer Inst. 94, 61–67 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Hilton, J.L. et al. Inactivation of BRCA1 and BRCA2 in ovarian cancer. J. Natl. Cancer Inst. 94, 1396–1406 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Brown, R. et al. hMLH1 expression and cellular responses of ovarian tumour cells to treatment with cytotoxic anticancer agents. Oncogene 15, 45–52 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Strathdee, G., MacKean, M.J., Illand, M. & Brown, R. A role for methylation of the hMLH1 promoter in loss of hMLH1 expression and drug resistance in ovarian cancer. Oncogene 18, 2335–2341 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Plumb, J.A., Strathdee, G., Sludden, J., Kaye, S.B. & Brown, R. Reversal of drug resistance in human tumor xenografts by 2′-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter. Cancer Res. 60, 6039–6044 (2000).

    CAS  PubMed  Google Scholar 

  29. Fogh, J., Wright, W.C. & Loveless, J.D. Absence of HeLa cell contamination in 169 cell lines derived from human tumors. J. Natl. Cancer Inst. 58, 209–214 (1977).

    Article  CAS  PubMed  Google Scholar 

  30. Hamilton, T.C. et al. Characterization of a human ovarian carcinoma cell line (NIH:OVCAR-3) with androgen and estrogen receptors. Cancer Res. 43, 5379–5389 (1983).

    CAS  PubMed  Google Scholar 

  31. Hills, C.A. et al. Biological properties of ten human ovarian carcinoma cell lines: calibration in vitro against four platinum complexes. Br. J. Cancer 59, 527–534 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rauh-Adelmann, C. et al. Altered expression of BRCA1, BRCA2, and a newly identified BRCA2 exon 12 deletion variant in malignant human ovarian, prostate, and breast cancer cell lines. Mol. Carcinog. 28, 236–246 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Kiguchi, K. et al. Selection of human ovarian carcinoma cells with high dissemination potential by repeated passage of the cells in vivo into nude mice, and involvement of Le(x)-determinant in the dissemination potential. Jpn. J. Cancer Res. 89, 923–932 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schilder, R.J. et al. Metallothionein gene expression and resistance to cisplatin in human ovarian cancer. Int. J. Cancer 45, 416–422 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Lewis, A.D., Hayes, J.D. & Wolf, C.R. Glutathione and glutathione-dependent enzymes in ovarian adenocarcinoma cell lines derived from a patient before and after the onset of drug resistance: intrinsic differences and cell cycle effects. Carcinogenesis 9, 1283–1287 (1988).

    Article  CAS  PubMed  Google Scholar 

  36. Kupfer, G.M., Naf, D., Suliman, A., Pulsipher, M. & D'Andrea, A.D. The Fanconi anaemia proteins, FAA and FAC, interact to form a nuclear complex. Nat. Genet. 17, 487–490 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Yamashita, T., Barber, D.L., Zhu, Y., Wu, N. & D'Andrea, A.D. The Fanconi anemia polypeptide FACC is localized to the cytoplasm. Proc. Natl. Acad. Sci. USA 91, 6712–6716 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Timmers, C. et al. Positional cloning of a novel Fanconi anemia gene, FANCD2. Mol. Cell 7, 241–248 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Siddique, M.A., Nakanishi, K., Taniguchi, T., Grompe, M. & D'Andrea, A.D. Function of the Fanconi anemia pathway in Fanconi anemia complementation group F and D1 cells. Exp. Hematol. 29, 1448–1455 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Garcia-Higuera, I., Kuang, Y., Naf, D., Wasik, J. & D'Andrea, A.D. Fanconi anemia proteins FANCA, FANCC, and FANCG/XRCC9 interact in a functional nuclear complex. Mol. Cell. Biol. 19, 4866–4873 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ory, D.S., Neugeboren, B.A. & Mulligan, R.C. A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. Proc. Natl. Acad. Sci. USA 93, 11400–11406 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kuang, Y. et al. Carboxy terminal region of the Fanconi anemia protein, FANCG/XRCC9, is required for functional activity. Blood 96, 1625–1632 (2000).

    CAS  PubMed  Google Scholar 

  43. Naf, D., Kupfer, G.M., Suliman, A., Lambert, K. & D'Andrea, A.D. Functional activity of the Fanconi anemia protein FAA requires FAC binding and nuclear localization. Mol. Cell. Biol. 18, 5952–5960 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang, Y. et al. Targeted disruption of the murine Fanconi anemia gene, Fancg/Xrcc9. Blood 98, 3435–3440 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Herman, J.G., Graff, J.R., Myohanen, S., Nelkin, B.D. & Baylin, S.B. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. USA 93, 9821–9826 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Grompe, K. Polyak, R. Harris, Q. Waisfisz and J. DeWinter for discussions, and M. Seiden, S. Williams, A. Mes-Massons and S. Chaney for cell lines. This work was supported by National Institutes of Health grants RO1HL52725, RO1 DK43889, P0150654 and PO1HL54785 (to A.D.D.) and by the Doris Duke charitable foundation. T. T. is a Scholar Fellow of the American Society of Hematology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan D. D'Andrea.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taniguchi, T., Tischkowitz, M., Ameziane, N. et al. Disruption of the Fanconi anemia–BRCA pathway in cisplatin-sensitive ovarian tumors. Nat Med 9, 568–574 (2003). https://doi.org/10.1038/nm852

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm852

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing