Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metabolic profiles of cancer cells

Key Points

  • Metabolomics is the study of the complete metabolic compliment of the cell, organ or organism.

  • The technique involves the combined use of multivariate statistics and an analytical technique such as nuclear magnetic resonance spectroscopy, gas chromatography–mass spectrometry or liquid chromatography–mass spectrometry.

  • A wide range of metabolites have been shown to be useful in distinguishing tumours from healthy tissue and in monitoring cellular activities such as cell-cycle progression or apoptosis.

  • Metabolomic approaches have been used to study the function of hypoxia-inducible factor 1 in tumour growth and shown that this transcription factor is involved in increasing glucose metabolism, rather than inducing angiogenesis, in hepatomas.

  • In vivo studies have shown that magnetic resonance spectroscopy can be used to identify tumour types, especially brain tumours, by their metabolic profiles.

  • As both nuclear magnetic resonance spectroscopy and mass spectrometry are high-throughput technologies, these tools can be used to profile systemic metabolism in tumour diagnosis and prognosis, through analysis of urine and blood plasma.

Abstract

In the post-genomic era, several profiling tools have been developed to provide a more comprehensive picture of tumour development and progression. The global analysis of metabolites, such as by mass spectrometry and high-resolution 1H nuclear magnetic resonance spectroscopy, can be used to define the metabolic phenotype of cells, tissues or organisms. These 'metabolomic' approaches are providing important information about tumorigenesis, revealing new therapeutic targets and will be an important component of automated diagnosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The biological organization of the '-omes'.
Figure 2: An in vivo, in vitro and in situ study of apoptosis in tumours.
Figure 3: Monitoring the action of tamoxifen on endometrial cells.

Similar content being viewed by others

References

  1. Chu, S. et al. The transcriptional program of sporulation in budding yeast. Science 282, 699–705 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Shalon, D., Smith, S. J. & Brown, P. O. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res. 6, 639–645 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Klose, J. et al. Genetic analysis of the mouse brain proteome. Nature Genet. 30, 385–393 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Golub, T. R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Moch, H. et al. High-throughput tissue microarray analysis to evaluate genes uncovered by cDNA microarray screening in renal cell carcinoma. Am. J. Pathol. 154, 981–986 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Celis, J. E. et al. Proteomics and immunohistochemistry define some of the steps involved in the squamous differentiation of the bladder transitional epithelium: a novel strategy for identifying metaplastic lesions. Cancer Res. 59, 3003–3009 (1999).

    CAS  PubMed  Google Scholar 

  7. Seow, T. K. et al. Two-dimensional electrophoresis map of the human hepatocellular carcinoma cell line, HCC-M, and identification of the separated proteins by mass spectrometry. Electrophoresis 21, 1787–1813 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Voss, T., Ahorn, H., Haberl, P., Dohner, H. & Wilgenbus, K. Correlation of clinical data with proteomics profiles in 24 patients with B-cell chronic lymphocytic leukemia. Int. J. Cancer 91, 180–186 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Oliver, S. G. Functional genomics: lessons from yeast. Phil. Trans. R. Soc. Lond. B 357, 17–23 (2002).

    Article  CAS  Google Scholar 

  10. Kell, D. B. & Westerhoff, H. V. Towards a rational approach to the optimization of flux in microbial biotransformations. Trends Biotehnol. 4, 137–142 (1986).

    Article  CAS  Google Scholar 

  11. Fell, D. A. Understanding the Control of Metabolism (Portland Press, London, 1996).

    Google Scholar 

  12. Mendes, P., Kell, D. B. & Westerhoff, H. V. Why and when channeling can decrease pool size at constant net flux in a simple dynamic channel. Biochim. Biophys. Acta 1289, 175–186 (1996).

    Article  PubMed  Google Scholar 

  13. ter Kuile, B. H. & Westerhoff, H. V. Transcriptome meets metabolome: hierarchical and metabolic regulation of the glycolytic pathway. FEBS Letts 500, 169–171 (2001).

    Article  CAS  Google Scholar 

  14. Devaux, P. G., Horning, M. G. & Horning, E. C. Benyzl-oxime derivatives of steroids; a new metabolic profile procedure for human urinary steroids. Anal. Lett. 4, 151 (1971).

    Article  CAS  Google Scholar 

  15. Horning, E. C. & Horning M. G. Human metabolic profiles obtained by GC and GC/MS. J. Chromatogr. Sci. 9, 129–140 (1971).

    Article  CAS  Google Scholar 

  16. Fan, T. W. Metabolite profiling by one- and two-dimensional NMR analysis of complex mixtures. Prog. Nucl. Mag. Res. Spectrosc. 28, 161–219 (1996).

    Article  CAS  Google Scholar 

  17. Florian, C. L., Preece, N. E., Bhakoo, K. K., Williams, S. R. & Noble M. D. Characteristic metabolic profiles revealed by 1H NMR spectroscopy for three types of human brain and nervous system tumours. NMR Biomed. 8, 253–264 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Florian, C. L., Preece, N. E., Bhakoo, K. K., Williams, S. R. & Nobel, M. D. Cell type-specific fingerprinting of meningioma and meningeal cells by proton nuclear magnetic resonance spectroscopy. Cancer Res. 55, 420–427 (1995).

    CAS  PubMed  Google Scholar 

  19. Williams, S. N., Anthony, M. L. & Brindle, K. M. Induction of apoptosis in two mammalian cell lines results in increased levels of fructose-1,6-phosphate and CDP-choline as determined by 31P MRS. Magn. Reson. Med. 40, 411–420 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Hakumaki, J. M. et al. Quantitative 1H NMR diffusion spectroscopy pf BT4C rat glioma during thymidine kinase-mediated gene therapy in vivo: identification of apoptotic response. Cancer Res. 58, 3791–3799 (1998).

    CAS  PubMed  Google Scholar 

  21. Griffin, J. L. et al. Assignment of 1H nuclear magnetic resonance visible polyunsaturated fatty acids in BT4C gliomas undergoing ganciclovir-thymidine kinase gene therapy-induced programmed cell death. Cancer Res. 63, 3195–3201 (2003).

    CAS  PubMed  Google Scholar 

  22. Raamsdonk, L. M. et al. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nature Biotechnol. 19, 45–50 (2001). This paper nicely illustrates how metabolomics can be used to phenotype yeast.

    Article  CAS  Google Scholar 

  23. Fiehn, O. Combining genomics, metabolome analysis and biochemical modeling to understand metabolic networks. Comp. Funct. Genomics 2, 155–168 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fiehn, O. Metabolomics — the link between genotypes and phenotypes. Plant Mol. Biol. 48, 155–171 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Griffin, J. L., Sang, E., Evens, T., Davies, K. & Clarke, K. Metabolic profiles of dystrophin and utrophin expression in mouse models of Duchenne Muscular dystrophy. FEBS Letts. 530, 109–116 (2002).

    Article  CAS  Google Scholar 

  26. Nicholson, J. K., Connelly, J., Lindon, J. C. & Holmes, E. Metabonomics: a platform for studying drug toxicity and gene function. Nature Rev. Drug Discov. 1, 153–161 (2002). A thorough overview of the use of metabonomics in the field of toxicology and drug development written by some of the key researchers in this area.

    Article  CAS  Google Scholar 

  27. Nicholson, J. K. & Wilson, I. Understanding 'global' systems biology: metabonomics and the continuum of metabolism. Nature Rev. Drug Discov. 2, 668–676 (2003).

    Article  CAS  Google Scholar 

  28. Chung, Y. L., Stubbs, M. & Griffiths, J. R. Metabolic Profiling, its Role in Biomarker Discovery and Gene Function Analysis (eds Harrigan, G. C. & Goodacre, R.) 83–94 (Kluwer Academic Publishing, Dordrecht, 2003).

    Book  Google Scholar 

  29. Tate, A. R. et al. Lipid metabolite peaks in pattern recognition analysis of tumour in vivo MR spectra. Anticancer Res. 16, 1575–1579 (1996).

    CAS  PubMed  Google Scholar 

  30. Tate, A. R. et al. Towards a method for automated classification of 1H MRS spectra from brain tumours. NMR Biomed. 11, 177–191 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Cheng, L. L. et al. Enhanced resolution of proton NMR spectra of malignant lymph nodes using magic angle spinning. Magn. Reson. Med. 36, 653–658 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Chen, J. -H., Enloe, B. M., Fletcher, C. D., Cory, D. G. & Singer, S. Biochemical analysis using high-resolution magic angle spinning NMR spectroscopy distinguishes lipoma-like well-differentiated liposarcoma from normal fat. J. Am. Chem. Soc. 123, 9200–9201 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Millis, K. et al. Classification of human liposarcoma and lipoma using ex vivo proton NMR spectroscopy. Magn. Reson. Med. 41, 257–267 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Tomlins, A. et al. High resolution magic angle spinning 1H nuclear magnetic resonance analysis of intact prostatic hyperplastic and tumour tissues. Anal. Comm. 35, 113–115 (1998).

    Article  CAS  Google Scholar 

  35. Griffiths, J. R. et al. Metabolic changes detected by in vivo magnetic resonance studies of HEPA-1 wild-type tumor deficient in hypoxia-inducible factor-1β (HIF-1β): evidence of an anabolic role for the HIF-1 pathway. Cancer Res. 62, 688–695 (2002). This study represents one of the first successes for the hypothesis-generating approach of metabolomics in understanding tumour metabolism and biochemistry.

    CAS  PubMed  Google Scholar 

  36. Griffiths, J. R. & Stubbs, M. Opportunities for studying cancer by metabolomics: preliminary observations on tumors deficient in hypoxia-inducible factor 1. Adv. Enzyme Regul. 43, 67–76 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, G. L., Jiang, B. H., Rue, E. A. & Semenza, G. L. Hypoxia-inducible factor 1 is a basic-helix-loop-PAS heterodimer regulated by cellular O2 tension. Proc. Natl Acad. Sci. USA 92, 5510–5514 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Maxwell, P. H. et al. Hypoxia-inducible factor 1 modulates gene expression in solid tumours and influences both angiogenesis and tumor growth. Proc. Natl Acad. Sci. USA 94, 8104–8109 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mountford, C. E. & Wright, L. C. Organization of lipids in the plasma membranes of malignant and stimulated cells: a new model. Trends Biochem. Sci. 13, 172–177 (1988).

    Article  CAS  PubMed  Google Scholar 

  40. Cheng, L. L., Chang, I. W., Smith, B. L. & Gonzalez, R. G. Evaluating human breast ductal carcinomas with high-resolution magic-angle spinning proton magnetic resonance spectroscopy. J. Magn. Reson. 135, 194–202 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Lehtimaki, K. K. et al. Metabolite changes in BT4C rat gliomas undergoing ganciclovir-thymidine kinase gene therapy-induced programmed cell death as studied by 1H NMR spectroscopy in vivo, ex vivo, and in vitro. J. Biol. Chem. 278, 45915–45923 (2003).

    Article  PubMed  CAS  Google Scholar 

  42. Sitter, B. et al. Cervical cancer tissue characterized by high-resolution magic angle spinning MR spectroscopy. MAGMA 16, 174–181 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Howells, S. L., Maxwell, R. J., Peet, A. C. & Griffiths, J. R. An investigation of tumor 1H nuclear magnetic resonance spectra by the application of chemometric techniques. Magn. Reson. Med. 28, 214–236 (1992).

    Article  CAS  PubMed  Google Scholar 

  44. Usenius, J. P. et al. Automated classification of human brain tumours by neural network analysis using in vivo1H magnetic resonance spectroscopic metabolite phenotypes. Neuroreport. 7, 1597–1600 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Tate, A. R. et al. Automated feature extraction for the classification of human in vivo 13C NMR spectra using statistical pattern recognition and wavelets. Magn. Reson. Med. 35, 834–840 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Preul, M. C., Caramanos, Z., Leblanc, R., Villemure, J. G. & Arnold, D. L. Using pattern analysis of in vivo proton MRSI data to improve the diagnosis and surgical management of patients with brain tumors. NMR Biomed. 11, 192–200 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Hagberg, G. From magnetic resonance spectroscopy to classification of tumors. A review of pattern recognition methods. NMR Biomed. 11, 148–156 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Gerstle, R. J., Aylward, S. R., Kromhout-Schiro, S. & Mukherji, S. K. The role of neural networks in improving the accuracy of MR spectroscopy for the diagnosis of head and neck squamous cell carcinoma. Am. J. Neuroradiol. 21, 1133–1138 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gray, H. F., Maxwell, R. J., Martinez-Perez, I., Arus, C. & Cerdan, S. Genetic programming for classification and feature selection: analysis of 1H nuclear magnetic resonance spectra from human brain tumour biopsies. NMR Biomed. 11, 217–224 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Gribbestad, I. S., Sitter, B., Lundgren, S., Krane, J. & Axelson, D. Metabolite composition in breast tumors examined by proton nuclear magnetic resonance spectroscopy. Anticancer Res. 19, 1737–1746 (1999).

    CAS  PubMed  Google Scholar 

  51. Tate, A. R. et al. Automated classification of short echo time in in vivo1H brain tumor spectra: a multicenter study. Magn. Reson. Med. 49, 29–36 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Howe, F. A. et al. Metabolic profiles of human brain tumors using quantitative in vivo1H magnetic resonance spectroscopy. Magn. Reson. Med. 49, 223–232 (2003). An informative paper on the use of in vivo MRS as a tool for generating metabolic profiles of human brain tumours. In this study the authors distinguish meningiomas, grade II astrocytomas, anaplastic astrocytomas and glioblastomas using the relative ratios of lactate, alanine, saturated lipid, myo -inositol and choline.

    Article  CAS  PubMed  Google Scholar 

  53. Underwood, J. et al. A prototype decision support system for MR spectroscopy-assisted diagnosis of brain tumours. Medinfo. 10, 561–565 (2001).

    Google Scholar 

  54. El-Deredy, W. et al. Pretreatment prediction of the chemotherapeutic response of human glioma cell cultures using nuclear magnetic resonance spectroscopy and artificial neural networks. Cancer Res. 57, 4196–4199 (1997).

    CAS  PubMed  Google Scholar 

  55. Carmichael, P. L. Mechanisms of action of antiestrogens: relevance to clinical benefits and risks. Cancer Invest. 16, 604–611 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Griffin, J. L., Pole, J. C., Nicholson, J. K. & Carmichael, P. L. Cellular environment of metabolites and a metabonomic study of tamoxifen in endometrial cells using gradient high resolution magic angle spinning 1H NMR spectroscopy. Biochim. Biophys. Acta 1619, 151–158 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Chung, Y. -L. et al. The pharmacodynamic effect of 17-AAG on HT29 xenografts in mice monitored by magnetic resonance spectroscopy. Proc. Am. Assoc. Cancer Res. 43, 73 (2002).

    Google Scholar 

  58. Chung, Y. -L. et al. Magnetic resonance spectroscopic pharmacodynamic markers of Hsp90 inhibitor, 17-allylamino-17-demethoxygeldanamycin, in human colon cancer models. J. Natl Cancer Inst. 95, 1624–1633 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Chung, Y. -L. et al. The effects of CYC202 on tumors monitored by magnetic resonance spectroscopy. Proc. Am. Assoc. Cancer Res. 43, 336 (2002).

    Google Scholar 

  60. Sterin, M., Cohen, J. S., Mardor, Y., Berman, E. & Ringel, I. Levels of phospholipid metabolites in breast cancer cells treated with antimitotic drugs: a 31P-magnetic resonance spectroscopy study. Cancer Res. 61, 7536–7543 (2001).

    CAS  PubMed  Google Scholar 

  61. Joshi, L. et al. Metabolomics of plant saponins: bioprospecting triterpene glycoside diversity with respect to mammalian cell targets. OMICS 6, 235–246 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Brindle, J. T. et al. Rapid and non-invasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nature Med. 8, 1439–1444 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Bathen, T. F., Engan, T., Krane, J. & Axelson, D. Analysis and classification of proton NMR spectra of lipoprotein fractions from healthy volunteers and patients with cancer or CHD. Anticancer Res. 20, 2393–2408 (2000).

    CAS  PubMed  Google Scholar 

  64. Dwarakanath, S., Ferris, C. D., Pierre, J. W., Asplund, R. O. & Curtis, D. L. A neural network approach to the early detection of cancer. Biomed. Sci. Instrum. 30, 239–243 (1994).

    CAS  PubMed  Google Scholar 

  65. Diem, M., Boydston-White, S. & Chiriboga, L. Infrared spectroscopy of cells and tissues: shining lights onto a novel subject. Appl. Spectr. 53, A148–A161 (1999).

    Article  Google Scholar 

  66. Schultz, C. P., Liu, K. Z., Johnston, J. B. & Mantsch, H. H. Prognosis of chronic lymphocytic leukemia from infrared spectra of lymphocytes. J. Mol. Struct. 408, 253–256 (1997).

    Article  Google Scholar 

  67. Boustany, N. N. et al. Analysis of nucleotides and aromatic amino acids in normal and neoplastic colon mucosa by ultraviolet resonance Raman spectroscopy. Lab. Investigat. 79, 1201–1214 (1999).

    CAS  Google Scholar 

  68. Go, V. L., Butrum, R. R. & Wong, D. A. Diet, nutrition, and cancer prevention: the postgenomic era. J. Nutr. 133 (Suppl. 1), 3830–3836 (2003).

    Article  Google Scholar 

  69. Taylor, J. L. et al. Analyzing tumor biology using HRMAS 1H NMR spectroscopy assisted with laser capture microdissection and RT-PCR. 43rd Exp. Nucl. Magn. Reson. Conf. 86 (2002).

  70. Boros, L. G., Brackett, D. J. & Harrigan G. G. Metabolic biomarker and kinase drug target discovery in cancer using stable isotope-based dynamic metabolic profiling (SIDMAP). Curr. Cancer Drug Targets 3, 445–453 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Tzika, A. A. et al. Biochemical characterization of pediatric brain tumors by using in vivo and ex vivo magnetic resonance spectroscopy. J. Neurosurg. 96, 1023–1031 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Pfeuffer, J., Tkac, I., Provencher, S. W. & Gruetter, R. Towards an in vivo neurochemical profile: quantification of 18 metabolites in short-echo-time 1H NMR spectra of the rat brain. J. Magn. Reson. 141, 104–120 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Lindon, J. C. et al. Contemporary issues in toxicology the role of metabonomics in toxicology and its evaluation by the COMET project. Toxicol. Appl. Pharmacol. 187, 137–146 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. De Luca, V. & St. Pierre, B. The cell and developmental biology of alkaloid biosynthesis. Trends Plant Sci. 5, 168–173 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Lindon, J. C., Holmes, E. & Nicholson J. K. Pattern recognition methods and applications in biomedical magnetic resonance. Prog. Nuc. Magn. Reson. 39, 1–40 (2001).

    Article  CAS  Google Scholar 

  76. Valafar, F. Pattern recognition techniques in microarray data analysis. Ann. NY Acad. Sci. 980, 41–64 (2002). An excellent and unbiased review of the current pattern-recognition techniques available to researchers. Although written from a DNA-microarray perspective, the information is still of relevance to those engaged in metabolomics.

    Article  CAS  PubMed  Google Scholar 

  77. Oliver, S. G., Winson, M. K., Kell, D. B. & Baganz, F. Systematic functional analysis of the yeast genome. Trends Biotechnol. 16, 373–378 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Bochner, B. R., Gadzinski, P. & Panomitros, E. Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Res. 11, 1246–1255 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hanlon, E. B. et al. Prospects for in-vivo Raman spectroscopy. Phys. Med. Biol. 45, R1–R59 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Tweeddale, H., Notley-McRobb, L. & Ferenci, T. Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool ('metabolome') analysis. J. Bacteriol. 180, 5109–5116 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ben-Yoseph, O., Badar-Goffer, R. S., Morris, P. G. & Bachelard, H. S. Glycerol 3-phosphate and lactate as indicators of the cerebral cytoplasmic redox state in severe and mild hypoxia respectively: a 13C- and 31P-n. m. r. study. Biochem J. 291, 915–919 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Callies, R., Sri-Pathmanathan, R. M., Ferguson, D. Y. & Brindle, K. M. The appearance of neutral lipid signals in the 1H NMR spectra of a myeloma cell line correlates with the induced formation of cytoplasmic lipid droplets. Magn. Reson. Med. 29, 546–550 (1993).

    Article  CAS  PubMed  Google Scholar 

  83. Preul, M. C. et al. Accurate, noninvasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy. Nature Med. 2, 323–325 (1996).

    Article  CAS  PubMed  Google Scholar 

  84. Beckonert, O., Monnerjahn, J., Bonk, U. & Leibfritz, D. Visualizing metabolic changes in breast-cancer tissue using 1H-NMR spectroscopy and self-organizing maps. NMR Biomed. 16, 1–11 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Anthony, M. L., Zhao, M. & Brindle, K. M. Inhibition of phosphatidylcholine biosynthesis following induction of apoptosis in HL-60 cells. J. Biol. Chem. 274, 19686–19692 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Singer, S., Millis, K., Souza, K. & Fletcher, C. Correlation of lipid content and composition with liposarcoma histology and grade. Ann. Surg. Oncol. 4, 557–563 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. El-Sayed, S. et al. An ex vivo study exploring the diagnostic potential of 1H magnetic resonance spectroscopy in squamous cell carcinoma of the head and neck region. Head Neck 24, 766–772 (2002).

    Article  PubMed  Google Scholar 

  88. Moreno, A., Lopez, L. A., Fabra, A. & Arus, C. 1H MRS markers of tumour growth in intrasplenic tumours and liver metastasis induced by injection of HT-29 cells in nude mice spleen. NMR Biomed. 11, 93–106 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.L.G. is supported by a Royal Society University Fellowship. The authors would like to thank R. Kauppinen of the University of Manchester, UK, and H. Antti of the University of Umea, Sweden, for supplying figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Shockcor.

Ethics declarations

Competing interests

John P. Shockcor is an employee of Bruker Biospin/Bruker Daltronics

Related links

Related links

DATABASES

Cancer.gov

brain cancer

breast cancer

cervical cancer

chronic lymphocytic leukaemia

colon cancer

Entrez Gene

GLUT1

GLUT3

HIF-1α

HIF-1β

VEGF

FURTHER INFORMATION

International Network for Pattern Recognition of Tumours Using Magnetic Resonance

Metabometrix glossary

Plant metabolmics

SpectroscopyNOW

Glossary

T2 RELAXATION MEASUREMENTS

The nuclear magnetic resonance (NMR) signal decays by several physical processes, one of which is T2 relaxation. This rate of relaxation is faster for metabolites that are slowly moving in the cell. NMR analysis can exploit this property, to selectively detect fast-tumbling molecules, which include many of the metabolites that are found in the cytosol. These spectra are referred to as 'T2 weighted'.

LINE WIDTHS

The distance between the two sides of a NMR signal (resonance) at the half height of the resonance. Each resonance will have a line width that is inversely dependent on the rate of T2 relaxation for that resonance. Therefore, metabolites that are slowly moving have broad line widths.

SPINNING RATE

During high-resolution magic angle spinning 1H nuclear magnetic resonance spectroscopy experiments samples are spun at an angle (the so-called magic angle) to the magnetic field to reduce line-broadening effects.

TUNEL STAINING

(Terminal deoxynucleotidyl transferase-mediated dUTP nick and labelling). A procedure for identifying apoptotic cells based on the detection of DNA cleavage.

NEURAL NETWORKS

Pattern-recognition processes that iteratively search for the best solution using a network construction that is similar to neurones in the brain.

CO-RESONANT METABOLITES

Nuclear magnetic resonance (NMR) spectroscopy detects the chemical groups that make up a molecule. Some metabolites have regions that are chemically very similar and therefore occur in the same position in the NMR spectrum. When the individual peaks (resonances) from two or more metabolites can not be distinguished, they are said to be 'co-resonant'. This confounds direct quantification.

FOURIER-TRANSFORM INFRARED SPECTROSCOPY

Spectroscopic technique based on examining the vibrational frequencies of given molecules. When a molecule absorbs infrared radiation of a defined energy, vibrations are induced in the molecule. However, these vibrations must involve an electrical dipolar change in the molecule. In general, this technique is poor at discriminating metabolites from a similar class of compounds.

RAMAN SPECTROSCOPY

When a metabolite is irradiated by light from a laser, the light is scattered with either the same amount of energy (Rayleigh scattering), or with more (Stokes) or less (anti-Stokes) energy because of changes in the vibrational energy of the metabolite. This Stokes and anti-Stokes scattering is observed in Raman spectroscopy.

CRYOPROBE

Nuclear magnetic resonance (NMR) probes for which the coil and pre-amplifier have been cryogenically cooled to reduce the amount of electronic noise in the NMR signal. They increase the signal-to-noise ratio by a factor of 3–4, compared with conventional probes. This can reduce experiment time 16-fold or required sample concentration by up to 4-fold.

LARMOR FREQUENCY

When a magnet or dipole is placed in a magnetic field, a torque is placed on it, called a 'magnetic moment', causing it to align with the magnetic field. For an electron, however, the magnetic moment is produced by the orbital motion of the electron about the nucleus. This produces a force that causes the magnetic moment to process around the direction of the magnetic field at a frequency termed the Larmor frequency.

PENTOSE-PHOSPHATE PATHWAY

An anabolic pathway that uses the six carbons of glucose to generate five-carbon sugars. The roles of this pathway are to generate NADPH for biosynthesis reactions, to provide cells with ribose-5-phosphate for nucleotide synthesis and to metabolize pentose sugars.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffin, J., Shockcor, J. Metabolic profiles of cancer cells. Nat Rev Cancer 4, 551–561 (2004). https://doi.org/10.1038/nrc1390

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1390

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing