Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Urothelial tumorigenesis: a tale of divergent pathways

Key Points

  • Urothelial tumours arise and evolve through divergent phenotypic pathways. Some tumours progress from urothelial hyperplasia to low-grade non-invasive superficial papillary tumours. More aggressive variants arise either from flat, high-grade carcinoma in situ and progress to invasive tumours, or they arise de novo as invasive tumours.

  • These two important phenotypic variants of urothelial tumours exhibit drastically different biological behaviours and prognoses. The low-grade papillary variant is often multifocal and tends to recur, but it infrequently progresses to muscle invasive stages, whereas most of the invasive variants develop into incurable metastases despite radical cystectomy.

  • It is becoming clear that the two urothelial tumour variants harbour distinctive genetic defects: the low-grade non-invasive papillary tumours are characterized by activating mutations in the HRAS gene and fibroblast growth factor receptor 3 gene; and the high-grade invasive tumours are characterized by structural and functional defects in the p53 and retinoblastoma protein (RB) tumour-suppressor pathways.

  • The deletion of both arms of chromosome 9 is prevalent in urothelial carcinomas and occurs during the earliest stages of tumorigenesis. However, these chromosomal aberrations do not seem to distinguish between the two tumour development pathways.

  • Tumour invasion and progression in the bladder seems to be a multifactorial process, promoted by microenvironmental changes that include the upregulation of N-cadherin, the downregulation of E-cadherin, the overexpression of matrix metalloproteinases 2 and 9, an imbalance between angiogenic and anti-angiogenic factors, and increased synthesis of prostaglandin.

  • Urothelial carcinomas are particularly amenable to pathway- and target-based therapies. The low-grade non-invasive papillary tumours could benefit tremendously from receptor tyrosine kinase (RTK)–Ras pathway inhibition by means such as small molecule inhibitors, monoclonal antibodies, farnesyl and geranylgeranyl inhibitors, and RAF and mitogen-activated protein kinase kinase (MEK) inhibitors. The invasive tumours, on the other hand, could benefit from replacement therapies that restore the functions of p53 and RB.

  • The intravesical (within the bladder) route of drug delivery provides a unique advantage because it locally enriches the drug while preventing systemic toxicity in urothelial carcinoma treatment.

  • The identification of specific carcinogens that precipitate each urothelial tumour pathway holds the key to eventually preventing this disease from occurring.

Abstract

Urothelial carcinoma of the bladder is unique among epithelial carcinomas in its divergent pathways of tumorigenesis. Low-grade papillary tumours rarely become muscle-invasive and they frequently harbour gene mutations that constitutively activate the receptor tyrosine kinase–Ras pathway. By contrast, most high-grade invasive tumours progress to life-threatening metastases and have defects in the p53 and the retinoblastoma protein pathways. Correcting pathway-specific defects represents an attractive strategy for the molecular therapy of urothelial carcinomas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Important genetic and epigenetic defects that characterize the divergent pathways of urothelial tumorigenesis.
Figure 2: Signalling cascades that are potentially involved in urothelial tumorigenesis during fibroblast growth factor receptor 3 and HRAS gene activation.

Similar content being viewed by others

References

  1. Parkin, D. M., Bray, F., Ferlay, J. & Pisani, P. Estimating the world cancer burden: Globocan 2000. Int. J. Cancer 94, 153–156 (2001).

    CAS  PubMed  Google Scholar 

  2. Johansson, S. L. & Cohen, S. M. Epidemiology and etiology of bladder cancer. Semin. Surg. Oncol. 13, 291–298 (1997). Comprehensive review of risk factors and potential chemical carcinogens associated with the development of urothelial carcinomas.

    CAS  PubMed  Google Scholar 

  3. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  PubMed  Google Scholar 

  4. Kinzler, K. W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996).

    CAS  PubMed  Google Scholar 

  5. Koss, L. G. Bladder cancer from a perspective of 40 years. J. Cell. Biochem. Suppl. 16I, 23–29 (1992). One of the pioneering reports using classical clinicopathological observations to indicate that the urothelium develops tumours along two distinctive pathways.

    CAS  PubMed  Google Scholar 

  6. Sauter, G. et al. in World Health Organization Classification of Tumors. Pathology and Genetics: Tumors of the Urinary System and Male Genital Organs. (eds Eble, J. N., Sauter, G., Epstein, J. I. & Sesterhenn, I.) PP110 (IARCC Press, Lyon, 2004).

    Google Scholar 

  7. Steinberg, G. D., Trump, D. L. & Cummings, K. B. Metastatic bladder cancer. Natural history, clinical course, and consideration for treatment. Urol. Clin. North Am. 19, 735–746 (1992).

    CAS  PubMed  Google Scholar 

  8. Liebert, M. & Seigne, J. Characteristics of invasive bladder cancers: histological and molecular markers. Semin. Urol. Oncol. 14, 62–72 (1996).

    CAS  PubMed  Google Scholar 

  9. Dalbagni, G., Presti, J., Reuter, V., Fair, W. R. & Cordon-Cardo, C. Genetic alterations in bladder cancer. Lancet 342, 469–471 (1993).

    CAS  PubMed  Google Scholar 

  10. Egger, G., Liang, G., Aparicio, A. & Jones, P. A. Epigenetics in human disease and prospects for epigenetic therapy. Nature 429, 457–463 (2004). Overview of the mechanisms of epigenetic gene silencing, such as DNA methylation and deacetylation. This paper discusses epigenetic diseases and emerging therapies based on the inhibition of DNA methyltransferases and histone deacetylases.

    CAS  PubMed  Google Scholar 

  11. Dinney, C. P. et al. Focus on bladder cancer. Cancer Cell 6, 111–116. (2004). Comprehensive review of urothelial carcinomas focusing on disease pathogenesis, experimental models, diagnosis and clinical therapies.

    CAS  PubMed  Google Scholar 

  12. Gschwind, A., Fischer, O. M. & Ullrich, A. The discovery of receptor tyrosine kinases: targets for cancer therapy. Nature Rev. Cancer 4, 361–370 (2004). In-depth review of RTK family proteins, including their structure, function, signalling pathways, their roles in tumorigenesis and their anti-RTK strategies in cancer treatment.

    CAS  Google Scholar 

  13. Reddy, E. P., Reynolds, R. K., Santos, E. & Barbacid, M. A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature 300, 149–152 (1982).

    CAS  PubMed  Google Scholar 

  14. Czerniak, B. et al. Concurrent mutations of coding and regulatory sequences of the Ha-ras gene in urinary bladder carcinomas. Hum. Pathol. 23, 1199–1204 (1992).

    CAS  PubMed  Google Scholar 

  15. Knowles, M. A. & Williamson, M. Mutation of H-ras is infrequent in bladder cancer: confirmation by single-strand conformation polymorphism analysis, designed restriction fragment length polymorphisms, and direct sequencing. Cancer Res. 53, 133–139 (1993).

    CAS  PubMed  Google Scholar 

  16. Fitzgerald, J. M. et al. Identification of H-ras mutations in urine sediments complements cytology in the detection of bladder tumors. J. Natl Cancer Inst. 87, 129–133 (1995).

    CAS  PubMed  Google Scholar 

  17. Feinberg, A. P., Vogelstein, B., Droller, M. J., Baylin, S. B. & Nelkin, B. D. Mutation affecting the 12th amino acid of the c-Ha-ras oncogene product occurs infrequently in human cancer. Science 220, 1175–1177 (1983).

    CAS  PubMed  Google Scholar 

  18. Przybojewska, B., Jagiello, A. & Jalmuzna, P. H-RAS, K-RAS, and N-RAS gene activation in human bladder cancers. Cancer Genet. Cytogenet. 121, 73–77 (2000).

    CAS  PubMed  Google Scholar 

  19. Zhu, D., Xing, D., Shen, X. & Liu, J. A method to quantitatively detect H-ras point mutation based on electrochemiluminescence. Biochem. Biophys. Res. Commun. 324, 964–969 (2004).

    CAS  PubMed  Google Scholar 

  20. Buyru, N., Tigli, H., Ozcan, F. & Dalay, N. Ras oncogene mutations in urine sediments of patients with bladder cancer. J. Biochem. Mol. Biol. 36, 399–402 (2003).

    CAS  PubMed  Google Scholar 

  21. Lin, J. H., Zhao, H. & Sun, T. T. A tissue-specific promoter that can drive a foreign gene to express in the suprabasal urothelial cells of transgenic mice. Proc. Natl Acad. Sci. USA 92, 679–683 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang, Z. T. et al. Role of Ha-ras activation in superficial papillary pathway of urothelial tumor formation. Oncogene 20, 1973–1980 (2001).

    CAS  PubMed  Google Scholar 

  23. Ye, D. W., Zheng, J. F., Qian, S. X. & Ma, Y. J. Correlation between the expression of oncogenes ras and c-erbB-2 and the biological behavior of bladder tumors. Urol. Res. 21, 39–43 (1993).

    CAS  PubMed  Google Scholar 

  24. Cappellen, D. et al. Frequent activating mutations of FGFR3 in human bladder and cervix carcinomas. Nature Genet. 23, 18–20 (1999). First report demonstrating FGFR3 mutations (which were previously associated with skeletal developmental disorders) in solid tumours, including urothelial and cervical carcinomas. Screening of all coding regions showed mutations concentrated in exons 7, 10 and 15.

    CAS  PubMed  Google Scholar 

  25. Ornitz, D. M. & Itoh, N. Fibroblast growth factors. Genome Biol. 2, REVIEWS 3005.1–3005.12 (2001).

    Google Scholar 

  26. Wilkie, A. O., Patey, S. J., Kan, S. H., van den Ouweland, A. M. & Hamel, B. C. FGFs, their receptors, and human limb malformations: clinical and molecular correlations. Am. J. Med. Genet. 112, 266–278 (2002).

    PubMed  Google Scholar 

  27. Sibley, K., Stern, P. & Knowles, M. A. Frequency of fibroblast growth factor receptor 3 mutations in sporadic tumours. Oncogene 20, 4416–4418 (2001).

    CAS  PubMed  Google Scholar 

  28. Fracchiolla, N. S. et al. FGFR3 gene mutations associated with human skeletal disorders occur rarely in multiple myeloma. Blood 92, 2987–2989 (1998).

    CAS  PubMed  Google Scholar 

  29. Wu, R. et al. Somatic mutations of fibroblast growth factor receptor 3 (FGFR3) are uncommon in carcinomas of the uterine cervix. Oncogene 19, 5543–5546 (2000).

    CAS  PubMed  Google Scholar 

  30. Rieger-Christ, K. M. et al. Identification of fibroblast growth factor receptor 3 mutations in urine sediment DNA samples complements cytology in bladder tumor detection. Cancer 98, 737–744 (2003).

    CAS  PubMed  Google Scholar 

  31. van Rhijn, B. W. et al. FGFR3 and p53 characterize alternative genetic pathways in the pathogenesis of urothelial cell carcinoma. Cancer Res, 64, 1911–1914 (2004).

    CAS  PubMed  Google Scholar 

  32. Bakkar, A. A. et al. FGFR3 and TP53 gene mutations define two distinct pathways in urothelial cell carcinoma of the bladder. Cancer Res. 63, 8108–8112 (2003).

    CAS  PubMed  Google Scholar 

  33. van Rhijn, B. W., Montironi, R., Zwarthoff, E. C., Jobsis, A. C. & van der Kwast, T. H. Frequent FGFR3 mutations in urothelial papilloma. J. Pathol. 198, 245–251 (2002).

    CAS  PubMed  Google Scholar 

  34. Billerey, C. et al. Frequent FGFR3 mutations in papillary non-invasive bladder (pTa) tumors. Am. J. Pathol. 158, 1955–1959 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Cho, J. Y. et al. Defective lysosomal targeting of activated fibroblast growth factor receptor 3 in achondroplasia. Proc. Natl Acad. Sci. USA 101, 609–614 (2004).

    CAS  PubMed  Google Scholar 

  36. Monsonego-Ornan, E., Adar, R., Feferman, T., Segev, O. & Yayon, A. The transmembrane mutation G380R in fibroblast growth factor receptor 3 uncouples ligand-mediated receptor activation from down-regulation. Mol. Cell Biol. 20, 516–522 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Agazie, Y. M., Movilla, N., Ischenko, I. & Hayman, M. J. The phosphotyrosine phosphatase SHP2 is a critical mediator of transformation induced by the oncogenic fibroblast growth factor receptor 3. Oncogene 22, 6909–6918 (2003).

    CAS  PubMed  Google Scholar 

  38. Kanai, M., Goke, M., Tsunekawa, S. & Podolsky, D. K. Signal transduction pathway of human fibroblast growth factor receptor 3. Identification of a novel 66-kDa phosphoprotein. J. Biol. Chem. 272, 6621–6628 (1997).

    CAS  PubMed  Google Scholar 

  39. Yasoda, A. et al. Overexpression of CNP in chondrocytes rescues achondroplasia through a MAPK-dependent pathway. Nature Med. 10, 80–86 (2004).

    CAS  PubMed  Google Scholar 

  40. Hart, K. C., Robertson, S. C. & Donoghue, D. J. Identification of tyrosine residues in constitutively activated fibroblast growth factor receptor 3 involved in mitogenesis, Stat activation, and phosphatidylinositol 3-kinase activation. Mol. Biol. Cell 12, 931–942 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hart, K. C. et al. Transformation and Stat activation by derivatives of FGFR1, FGFR3, and FGFR4. Oncogene 19, 3309–3320 (2000).

    CAS  PubMed  Google Scholar 

  42. Memon, A. A. et al. Expression of HER3, HER4 and their ligand heregulin-4 is associated with better survival in bladder cancer patients. Br. J. Cancer 91, 2034–2041 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lipponen, P. & Eskelinen, M. Expression of epidermal growth factor receptor in bladder cancer as related to established prognostic factors, oncoprotein (c-erbB-2, p53) expression and long-term prognosis. Br. J. Cancer 69, 1120–1125 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Messing, E. M. Growth factors and bladder cancer: clinical implications of the interactions between growth factors and their urothelial receptors. Semin. Surg. Oncol. 8, 285–292 (1992).

    CAS  PubMed  Google Scholar 

  45. Coogan, C. L., Estrada, C. R., Kapur, S. & Bloom, K. J. HER-2/neu protein overexpression and gene amplification in human transitional cell carcinoma of the bladder. Urology 63, 786–790 (2004).

    PubMed  Google Scholar 

  46. Sandberg, A. A. Cytogenetics and molecular genetics of bladder cancer: a personal view. Am. J. Med. Genet. 115, 173–182 (2002).

    PubMed  Google Scholar 

  47. Stoehr, R. et al. Deletions of chromosomes 9 and 8p in histologically normal urothelium of patients with bladder cancer. Eur. Urol. 47, 58–63 (2005).

    CAS  PubMed  Google Scholar 

  48. Spruck, C. H. R. et al. Two molecular pathways to transitional cell carcinoma of the bladder. Cancer Res. 54, 784–788 (1994).

    CAS  PubMed  Google Scholar 

  49. Obermann, E. C. et al. Frequent genetic alterations in flat urothelial hyperplasias and concomitant papillary bladder cancer as detected by CGH, LOH, and FISH analyses. J. Pathol. 199, 50–57 (2003).

    CAS  PubMed  Google Scholar 

  50. Chow, N. H. et al. Papillary urothelial hyperplasia is a clonal precursor to papillary transitional cell bladder cancer. Int. J. Cancer 89, 514–518 (2000).

    CAS  PubMed  Google Scholar 

  51. Hartmann, A. et al. Frequent genetic alterations in simple urothelial hyperplasias of the bladder in patients with papillary urothelial carcinoma. Am. J. Pathol. 154, 721–727 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hartmann, A. et al. Occurrence of chromosome 9 and p53 alterations in multifocal dysplasia and carcinoma in situ of human urinary bladder. Cancer Res. 62, 809–818 (2002).

    CAS  PubMed  Google Scholar 

  53. Sherr, C. J. The INK4a/ARF network in tumour suppression. Nature Rev. Mol. Cell Biol. 2, 731–737 (2001).

    CAS  Google Scholar 

  54. Baud, E., Catilina, P. & Bignon, Y. J. p16 involvement in primary bladder tumors: analysis of deletions and mutations. Int. J. Oncol. 14, 441–445 (1999).

    CAS  PubMed  Google Scholar 

  55. Orlow, I. et al. Deletion of the p16 and p15 genes in human bladder tumors. J. Natl Cancer Inst. 87, 1524–1529 (1995).

    CAS  PubMed  Google Scholar 

  56. Gonzalez-Zulueta, M. et al. Methylation of the 5′CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. Cancer Res. 55, 4531–4535 (1995).

    CAS  PubMed  Google Scholar 

  57. Gonzalgo, M. L. et al. The role of DNA methylation in expression of the p19/p16 locus in human bladder cancer cell lines. Cancer Res. 58, 1245–1252 (1998).

    CAS  PubMed  Google Scholar 

  58. Serrano, M. et al. Role of the INK4a locus in tumor suppression and cell mortality. Cell 85, 27–37 (1996).

    CAS  PubMed  Google Scholar 

  59. Kamijo, T. et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91, 649–659 (1997).

    CAS  PubMed  Google Scholar 

  60. Sharpless, N. E. et al. Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 413, 86–91 (2001).

    CAS  PubMed  Google Scholar 

  61. Knowles, M. A., Habuchi, T., Kennedy, W. & Cuthbert-Heavens, D. Mutation spectrum of the 9q34 tuberous sclerosis gene TSC1 in transitional cell carcinoma of the bladder. Cancer Res. 63, 7652–7656 (2003).

    CAS  PubMed  Google Scholar 

  62. Knowles, M. A., Shaw, M. E. & Proctor, A. J. Deletion mapping of chromosome 8 in cancers of the urinary bladder using restriction fragment length polymorphisms and microsatellite polymorphisms. Oncogene 8, 1357–1364 (1993).

    CAS  PubMed  Google Scholar 

  63. Natrajan, R., Louhelainen, J., Williams, S., Laye, J. & Knowles, M. A. High-resolution deletion mapping of 15q13. 2-q21. 1 in transitional cell carcinoma of the bladder. Cancer Res. 63, 7657–7662 (2003).

    CAS  PubMed  Google Scholar 

  64. Cordon-Cardo, C. Molecular alterations in bladder cancer. Cancer Surv. 32, 115–131 (1998).

    CAS  PubMed  Google Scholar 

  65. Lu, M. L. et al. Impact of alterations affecting the p53 pathway in bladder cancer on clinical outcome, assessed by conventional and array-based methods. Clin. Cancer Res. 8, 171–179 (2002).

    CAS  PubMed  Google Scholar 

  66. Stein, J. P. et al. Effect of p21WAF1/CIP1 expression on tumor progression in bladder cancer. J. Natl Cancer Inst. 90, 1072–1079 (1998).

    CAS  PubMed  Google Scholar 

  67. Feng, Z., Hu, W., Rom, W. N., Beland, F. A. & Tang, M. S. 4-aminobiphenyl is a major etiological agent of human bladder cancer: evidence from its DNA binding spectrum in human p53 gene. Carcinogenesis 23, 1721–1727 (2002).

    CAS  PubMed  Google Scholar 

  68. Orntoft, T. F. & Wolf, H. Molecular alterations in bladder cancer. Urol. Res. 26, 223–233 (1998).

    CAS  PubMed  Google Scholar 

  69. Cordon-Cardo, C. et al. p53 mutations in human bladder cancer: genotypic versus phenotypic patterns. Int. J. Cancer 56, 347–353 (1994).

    CAS  PubMed  Google Scholar 

  70. Hruban, R. H., van der Riet, P., Erozan, Y. S. & Sidransky, D. Brief report: molecular biology and the early detection of carcinoma of the bladder--the case of Hubert H. Humphrey. N. Engl. J. Med. 330, 1276–1278 (1994).

    CAS  PubMed  Google Scholar 

  71. Wagner, U. et al. Patterns of p53, erbB-2, and EGF-r expression in premalignant lesions of the urinary bladder. Hum. Pathol. 26, 970–978 (1995).

    CAS  PubMed  Google Scholar 

  72. Esrig, D. et al. Accumulation of nuclear p53 and tumor progression in bladder cancer. N. Engl. J. Med. 331, 1259–1264 (1994).

    CAS  PubMed  Google Scholar 

  73. Cordon-Cardo, C. Cell cycle regulators as prognostic factors for bladder cancer. Eur. Urol. 33, 11–12 (1998).

    PubMed  Google Scholar 

  74. Masters, J. R. et al. Can p53 staining be used to identify patients with aggressive superficial bladder cancer? J. Pathol. 200, 74–81 (2003).

    PubMed  Google Scholar 

  75. Shariat, S. F. et al. p53, p21, pRb, and p16 expression predict clinical outcome in cystectomy with bladder cancer. J. Clin. Oncol. 22, 1014–1024 (2004).

    CAS  PubMed  Google Scholar 

  76. Hinata, N. et al. Radiation induces p53-dependent cell apoptosis in bladder cancer cells with wild-type- p53 but not in p53-mutated bladder cancer cells. Urol. Res. 31, 387–396 (2003).

    CAS  PubMed  Google Scholar 

  77. Shiraishi, K., Eguchi, S., Mohri, J. & Kamiryo, Y. P53 mutation predicts intravesical adriamycin instillation failure in superficial transitional cell carcinoma of bladder. Anticancer Res. 23, 3475–3478 (2003).

    CAS  PubMed  Google Scholar 

  78. Cote, R. J., Esrig, D., Groshen, S., Jones, P. A. & Skinner, D. G. p53 and treatment of bladder cancer. Nature 385, 123–125 (1997). In a trial of adjuvant chemotherapy for patients with invasive urothelial carcinomas, only those that exhibited altered p53 expression responded to therapy. This landmark study forms the basis for an ongoing multicentre clinical trial on p53-targeted therapy trial in bladder cancer.

    CAS  PubMed  Google Scholar 

  79. Donehower, L. A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    CAS  PubMed  Google Scholar 

  80. Gao, J. et al. p53 deficiency provokes urothelial proliferation and synergizes with activated HA-RAS in promoting urothelial tumorigenesis. Oncogene 23, 687–696 (2004).

    CAS  PubMed  Google Scholar 

  81. Piette, J., Neel, H. & Marechal, V. Mdm2: keeping p53 under control. Oncogene 15, 1001–1010 (1997).

    CAS  PubMed  Google Scholar 

  82. Korkolopoulou, P. et al. The role of p53, MDM2 and c-erb B-2 oncoproteins, epidermal growth factor receptor and proliferation markers in the prognosis of urinary bladder cancer. Pathol. Res. Pract. 193, 767–775 (1997).

    CAS  PubMed  Google Scholar 

  83. Simon, R. et al. Amplification pattern of 12q13–q15 genes (MDM2, CDK4, GLI) in urinary bladder cancer. Oncogene 21, 2476–2483 (2002).

    CAS  PubMed  Google Scholar 

  84. Fletcher, O. et al. Lifetime risks of common cancers among retinoblastoma survivors. J. Natl Cancer Inst. 96, 357–363 (2004).

    PubMed  Google Scholar 

  85. Cairns, P., Proctor, A. J. & Knowles, M. A. Loss of heterozygosity at the RB locus is frequent and correlates with muscle invasion in bladder carcinoma. Oncogene 6, 2305–2309 (1991).

    CAS  PubMed  Google Scholar 

  86. Chatterjee, S. J. et al. Hyperphosphorylation of pRb: a mechanism for RB tumour suppressor pathway inactivation in bladder cancer. J. Pathol. 203, 762–770 (2004).

    CAS  PubMed  Google Scholar 

  87. Logothetis, C. J. et al. Altered expression of retinoblastoma protein and known prognostic variables in locally advanced bladder cancer. J. Natl Cancer Inst. 84, 1256–12561 (1992).

    CAS  PubMed  Google Scholar 

  88. Hernando, E. et al. Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control. Nature 430, 797–802 (2004). Provides direct evidence that MAD2 is a major target of E2F and that RB inactivation leads to increased activity of E2F, and then MAD2 overexpression and aneuploidy.

    CAS  PubMed  Google Scholar 

  89. Cote, R. J. et al. Elevated and absent pRb expression is associated with bladder cancer progression and has cooperative effects with p53. Cancer Res. 58, 1090–1094 (1998).

    CAS  PubMed  Google Scholar 

  90. Grossman, H. B. et al. p53 and Rb expression predict progression in T1 bladder cancer. Clin. Cancer Res. 4, 829–834 (1998).

    CAS  PubMed  Google Scholar 

  91. Cordon-Cardo, C. et al. Cooperative effects of p53 and pRB alterations in primary superficial bladder tumors. Cancer Res. 57, 1217–1221 (1997).

    CAS  PubMed  Google Scholar 

  92. Chatterjee, S. J. et al. Combined effects of p53, p21, and pRb expression in the progression of bladder transitional cell carcinoma. J. Clin. Oncol. 22, 1007–1013 (2004).

    CAS  PubMed  Google Scholar 

  93. Pipas, J. M. & Levine, A. J. Role of T antigen interactions with p53 in tumorigenesis. Semin. Cancer Biol. 11, 23–30 (2001).

    CAS  PubMed  Google Scholar 

  94. Zhang, Z. T., Pak, J., Shapiro, E., Sun, T. T. & Wu, X. R. Urothelium-specific expression of an oncogene in transgenic mice induced the formation of carcinoma in situ and invasive transitional cell carcinoma. Cancer Res. 59, 3512–3517 (1999).

    CAS  PubMed  Google Scholar 

  95. Grippo, P. J. & Sandgren, E. P. Highly invasive transitional cell carcinoma of the bladder in a simian virus 40 T-antigen transgenic mouse model. Am. J. Pathol. 157, 805–813 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Garcia del Muro, X. et al. Prognostic value of the expression of E-cadherin and β-catenin in bladder cancer. Eur. J. Cancer 36, 357–362 (2000).

    CAS  PubMed  Google Scholar 

  97. Shariat, S. F. et al. E-cadherin expression predicts clinical outcome in carcinoma in situ of the urinary bladder. Urology 57, 60–65 (2001).

    CAS  PubMed  Google Scholar 

  98. Popov, Z. et al. Low E-cadherin expression in bladder cancer at the transcriptional and protein level provides prognostic information. Br. J. Cancer 83, 209–214 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Ribeiro-Filho, L. A., et al. CpG hypermethylation of promoter region and inactivation of E-cadherin gene in human bladder cancer. Mol. Carcinog. 34, 187–198 (2002).

    CAS  PubMed  Google Scholar 

  100. Zhang, X. et al. Association between a C/A single nucleotide polymorphism of the E-cadherin gene promoter and transitional cell carcinoma of the bladder. J. Urol. 170, 1379–1382 (2003).

    CAS  PubMed  Google Scholar 

  101. Sanchez-Carbayo, M. et al. Molecular profiling of bladder cancer using cDNA microarrays: defining histogenesis and biological phenotypes. Cancer Res. 62, 6973–6980 (2002).

    CAS  PubMed  Google Scholar 

  102. Rieger-Christ, K. M. et al. Novel expression of N-cadherin elicits in vitro bladder cell invasion via the Akt signaling pathway. Oncogene 23, 4745–4753 (2004).

    CAS  PubMed  Google Scholar 

  103. Vihinen, P. & Kahari, V. M. Matrix metalloproteinases in cancer: prognostic markers and therapeutic targets. Int. J. Cancer 99, 157–166 (2002).

    CAS  PubMed  Google Scholar 

  104. Kanayama, H. Matrix metalloproteinases and bladder cancer. J. Med. Invest. 48, 31–43 (2001).

    CAS  PubMed  Google Scholar 

  105. Izawa, J. I. et al. Differential expression of progression-related genes in the evolution of superficial to invasive transitional cell carcinoma of the bladder. Oncol. Rep. 8, 9–15 (2001).

    CAS  PubMed  Google Scholar 

  106. Slaton, J. W. et al. Treatment with low-dose interferon-a restores the balance between matrix metalloproteinase-9 and E-cadherin expression in human transitional cell carcinoma of the bladder. Clin. Cancer Res. 7, 2840–2853 (2001).

    CAS  PubMed  Google Scholar 

  107. Campbell, S. C., Volpert, O. V., Ivanovich, M. & Bouck, N. P. Molecular mediators of angiogenesis in bladder cancer. Cancer Res. 58, 1298–3104 (1998).

    CAS  PubMed  Google Scholar 

  108. Grossfeld, G. D. et al. Thrombospondin-1 expression in bladder cancer: association with p53 alterations, tumor angiogenesis, and tumor progression. J. Natl Cancer Inst. 89, 219–227 (1997).

    CAS  PubMed  Google Scholar 

  109. Komhoff, M. et al. Enhanced expression of cyclooxygenase-2 in high grade human transitional cell bladder carcinomas. Am. J. Pathol. 157, 29–35 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Sebolt-Leopold, J. S. & Herrera, R. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nature Rev. Cancer 4, 937–947 (2004). In-depth review of how MAPK pathway components are being exploited for target-based therapies. Summarizes the mechanisms, therapeutic effects and challenges of the use of inhibitors against farnesyltransferases, RAF and MEK.

    CAS  Google Scholar 

  111. Downward, J. Targeting RAS signalling pathways in cancer therapy. Nature. Rev. Cancer 3, 11–22 (2003). Reviews upstream and downstream signals of RAS, the role of Ras pathway activation in tumorigenesis, and therapeutic strategies targeting various components of the Ras pathway.

    CAS  Google Scholar 

  112. Bellmunt, J., Hussain, M. & Dinney, C. P. Novel approaches with targeted therapies in bladder cancer. Therapy of bladder cancer by blockade of the epidermal growth factor receptor family. Crit. Rev. Oncol. Hematol. 46 (Suppl.), S85–S104 (2003).

    PubMed  Google Scholar 

  113. Laird, A. D. et al. SU6668 is a potent antiangiogenic and antitumor agent that induces regression of established tumors. Cancer Res. 60, 4152–4160 (2000).

    CAS  PubMed  Google Scholar 

  114. Mohammadi, M. et al. Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors. Science 276, 955–960 (1997). By screening a library of synthetic compounds, the authors identified a new class of inhibitors (belonging to indolinones) for RTKs. Crystal structures showed that the compounds occupy the ATP binding site of the tyrosine kinase domain of FGFR1.

    CAS  PubMed  Google Scholar 

  115. Paterson, J. L. et al. Preclinical studies of fibroblast growth factor receptor 3 as a therapeutic target in multiple myeloma. Br. J. Haematol. 124, 595–603 (2004).

    CAS  PubMed  Google Scholar 

  116. Grand, E. K., Chase, A. J., Heath, C., Rahemtulla, A. & Cross, N. C. Targeting FGFR3 in multiple myeloma: inhibition of t(4;14)-positive cells by SU5402 and PD173074. Leukemia 18, 962–966 (2004).

    CAS  PubMed  Google Scholar 

  117. Mohammadi, M. et al. Crystal structure of an angiogenesis inhibitor bound to the FGF receptor tyrosine kinase domain. EMBO J. 17, 5896–5904 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Trudel, S. et al. Inhibition of fibroblast growth factor receptor 3 induces differentiation and apoptosis in t(4;14) myeloma. Blood 103, 3521–3528 (2004).

    CAS  PubMed  Google Scholar 

  119. Trudel, S. et al. CHIR-258, a novel, multi-targeted tyrosine kinase inhibitor for the potential treatment of t(4;14) multiple myeloma. Blood 105, 2941–2948 (2005).

    CAS  PubMed  Google Scholar 

  120. Gomez-Roman, J. J. et al. Fibroblast growth factor receptor 3 Is overexpressed in urinary tract carcinomas and modulates the neoplastic cell growth. Clin. Cancer Res. 11, 459–465 (2005).

    CAS  PubMed  Google Scholar 

  121. Rauchenberger, R. et al. Human combinatorial Fab library yielding specific and functional antibodies against the human fibroblast growth factor receptor 3. J. Biol. Chem. 278, 38194–38205 (2003).

    CAS  PubMed  Google Scholar 

  122. Sebti, S. M. & Adjei, A. A. Farnesyltransferase inhibitors. Semin. Oncol. 31, 28–39 (2004).

    CAS  PubMed  Google Scholar 

  123. Brunner, T. B. et al. Farnesyltransferase inhibitors: an overview of the results of preclinical and clinical investigations. Cancer Res. 63, 5656–5668 (2003). Discusses the mechanisms and potential targets of farnesyltransferase inhibitors and summarizes completed and ongoing clinical trials using these inhibitors.

    CAS  PubMed  Google Scholar 

  124. Lobell, R. B. et al. Evaluation of farnesyl:protein transferase and geranylgeranyl:protein transferase inhibitor combinations in preclinical models. Cancer Res. 61, 8758–8768 (2001).

    CAS  PubMed  Google Scholar 

  125. Cohen-Jonathan, E. et al. Farnesyltransferase inhibitors potentiate the antitumor effect of radiation on a human tumor xenograft expressing activated HRAS. Radiat. Res. 154, 125–132 (2000).

    CAS  PubMed  Google Scholar 

  126. Allen, L. F., Sebolt-Leopold, J. & Meyer, M. B. CI-1040 (PD184352), a targeted signal transduction inhibitor of MEK (MAPKK). Semin. Oncol. 30, 105–116 (2003).

    CAS  PubMed  Google Scholar 

  127. Hsieh, J. T., Dinney, C. P. & Chung, L. W. The potential role of gene therapy in the treatment of bladder cancer. Urol. Clin. North Am. 27, 103–113 (2000).

    CAS  PubMed  Google Scholar 

  128. Pagliaro, L. C. Gene therapy for bladder cancer. World J. Urol. 18, 148–151 (2000).

    CAS  PubMed  Google Scholar 

  129. Kuball, J. et al. Successful adenovirus-mediated wild-type p53 gene transfer in patients with bladder cancer by intravesical vector instillation. J. Clin. Oncol. 20, 957–965 (2002).

    CAS  PubMed  Google Scholar 

  130. Pagliaro, L. C. et al. Repeated intravesical instillations of an adenoviral vector in patients with locally advanced bladder cancer: a phase I study of p53 gene therapy. J. Clin. Oncol. 21, 2247–2253 (2003).

    CAS  PubMed  Google Scholar 

  131. Siemens, D. R., Crist, S., Austin, J. C., Tartaglia, J. & Ratliff, T. L. Comparison of viral vectors: gene transfer efficiency and tissue specificity in a bladder cancer model. J. Urol. 170, 979–984 (2003).

    CAS  PubMed  Google Scholar 

  132. Li, Y. et al. Loss of adenoviral receptor expression in human bladder cancer cells: a potential impact on the efficacy of gene therapy. Cancer Res. 59, 325–330 (1999).

    CAS  PubMed  Google Scholar 

  133. Fodor, I. et al. Vaccinia virus mediated p53 gene therapy for bladder cancer in an orthotopic murine model. J. Urol. 173, 604–609 (2005).

    CAS  PubMed  Google Scholar 

  134. Kikuchi, E. et al. Inhibition of orthotopic human bladder tumor growth by lentiviral gene transfer of endostatin. Clin. Cancer Res. 10, 1835–1842 (2004).

    CAS  PubMed  Google Scholar 

  135. McNeish, I. A., Bell, S. J. & Lemoine, N. R. Gene therapy progress and prospects: cancer gene therapy using tumour suppressor genes. Gene Therapy 11, 497–503 (2004).

    CAS  PubMed  Google Scholar 

  136. Foster, B. A., Coffey, H. A., Morin, M. J. & Rastinejad, F. Pharmacological rescue of mutant p53 conformation and function. Science 286, 2507–2510 (1999). The mass screening of a library of synthetic compounds identified a prototypic chemical labelled CP-31398, which was capable of stabilizing wild-type p53 and nascent (but not preformed) p53 mutant, and of inhibiting tumour growth in vitro and in vivo.

    CAS  PubMed  Google Scholar 

  137. Bykov, V. J. et al. Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nature Med. 8, 282–288 (2002). A compound termed PRIMA 1 was discovered through screening of a chemical library based on growth suppression of tumour cells. PRIMA 1 was capable of restoring the conformational structure, DNA binding activity and target-gene transcription of mutant p53, and inhibiting tumour growth in vivo.

    CAS  PubMed  Google Scholar 

  138. Demma, M. J., Wong, S., Maxwell, E. & Dasmahapatra, B. CP-31398 restores DNA-binding activity to mutant p53 in vitro but does not affect p53 homologs p63 and p73. J. Biol. Chem. 279, 45887–45896 (2004).

    CAS  PubMed  Google Scholar 

  139. Luu, Y., Bush, J., Cheung, K. J. Jr & Li, G. The p53 stabilizing compound CP-31398 induces apoptosis by activating the intrinsic Bax/mitochondrial/caspase-9 pathway. Exp. Cell Res. 276, 214–222 (2002).

    CAS  PubMed  Google Scholar 

  140. Cordon-Cardo, C. & Reuter, V. E. Alterations of tumor suppressor genes in bladder cancer. Semin. Diagn. Pathol. 14, 123–132 (1997).

    CAS  PubMed  Google Scholar 

  141. Zhang, X. et al. Adenoviral-mediated retinoblastoma 94 produces rapid telomere erosion, chromosomal crisis, and caspase-dependent apoptosis in bladder cancer and immortalized human urothelial cells but not in normal urothelial cells. Cancer Res. 63, 760–765 (2003).

    CAS  PubMed  Google Scholar 

  142. Li, D. et al. The role of adenovirus-mediated retinoblastoma 94 in the treatment of head and neck cancer. Cancer Res. 62, 4637–4644 (2002).

    CAS  PubMed  Google Scholar 

  143. Cordon-Cardo, C., Cote, R. J. & Sauter, G. Genetic and molecular markers of urothelial premalignancy and malignancy. Scand. J. Urol. Nephrol. (Suppl.) 205, 82–93 (2000).

    Google Scholar 

  144. Jonkers, J. & Berns, A. Conditional mouse models of sporadic cancer. Nature Rev. Cancer 2, 251–265 (2002).

    CAS  Google Scholar 

  145. Wallerand, H. et al. Mutations in TP53, but not FGFR3, in urothelial cell carcinoma of the bladder are influenced by smoking: contribution of exogenous versus endogenous carcinogens. Carcinogenesis 26, 177–184 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author wishes to acknowledge the useful discussion/comments by members of his laboratory and his collaborators. Research in the author's laboratory is supported by grants from the United States National Institutes of Health and Veterans' Administration. The author regrets that due to space limitation many important studies could not be cited in the article.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

CDKN2A

COX2

E-cadherin

EGFR

FGFR3

HRAS

MAD2

MDM2

MMP9

N-cadherin

p53

RB1

TSC1

National Cancer Institute

urothelial carcinoma

FURTHER INFORMATION

American Urological Association homepage

National Cancer Institute progress report on kidney and bladder cancers

Clinical trials on bladder cancer

Glossary

HYPERPLASIA

An increase in the number of cells in a tissue or organ without corresponding gross morphological changes.

ANEUSOMY

Having an abnormal number of chromosomes. Most human epithelial cancers harbour genomes that are characterized by gross aneusomy.

LOSS OF HETEROZYGOSITY

In cells that carry a mutated allele of a tumour-suppressor gene, the gene becomes fully inactivated when the cell loses a large part of the chromosome carrying the wild-type allele. Regions with high frequency of loss of heterozygosity are believed to harbour tumour-suppressor genes.

COMPARATIVE GENOMIC HYBRIDIZATION

A molecular cytogenetic method of screening cells for DNA gains and losses at a chromosomal level. Differentially labelled test and reference DNA are hybridized simultaneously to metaphase chromosomes to generate a map of DNA copy number changes.

ARRAY CGH

Similar to conventional comparative genomic hybridization (CGH), but during hybridization, cloned chromosomal DNA fragments (about 200 kb in size) replace the metaphase chromosomes. This method offers greater sensitivity and resolution than conventional CGH in detecting copy number changes.

HAMARTOMA

A focal benign growth that contains an abnormal proportion of a single cell-type or an abnormal mixture of tissue elements that are normally present at that site. Several hereditary cancer predisposition syndromes also feature hamartomas in several tissues, including tuberous sclerosis and Cowden syndrome.

MATRIGEL

The extracellular matrix secreted by the Engelbreth–Holm–Swarm mouse sarcoma cell-line. It contains laminin, collagen IV, nidogen/entactin and proteoglycans, and so resembles the basement membrane.

ORTHOTOPIC

Of identical anatomical location (orthotopic tumour model: transplantation of tumour tissues into an organ from which the tumour originated).

XENOGRAFT

Tissue (for example, human tumour cells) from one animal species grafted onto another animal species (such as subcutaneously into nude mice).

TRANSDUCTION-ENHANCING AGENT

Chemical agents that can increase the efficiency of gene transfer of viral vectors into the host cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, XR. Urothelial tumorigenesis: a tale of divergent pathways. Nat Rev Cancer 5, 713–725 (2005). https://doi.org/10.1038/nrc1697

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1697

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing