Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Environment-mediated drug resistance: a major contributor to minimal residual disease

Abstract

Environment-mediated drug resistance is a form of de novo drug resistance that protects tumour cells from the initial effects of diverse therapies. Surviving foci of residual disease can then develop complex and permanent acquired resistance in response to the selective pressure of therapy. Recent evidence indicates that environment-mediated drug resistance arises from an adaptive, reciprocal signalling dialogue between tumour cells and the surrounding microenvironment. We propose that new therapeutic strategies targeting this interaction should be applied during initial treatment to prevent the emergence of acquired resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tumour–stroma communication is the basis of EMDR.
Figure 2: EMDR contributes to MRD and acquired drug resistance.

Similar content being viewed by others

References

  1. Damiano, J. S., Cress, A. E., Hazlehurst, L. A., Shtil, A. A. & Dalton, W. S. Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 93, 1658–1667 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Meads, M. B., Hazlehurst, L. A. & Dalton, W. S. The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance. Clin. Cancer Res. 14, 2519–2526 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Cordes, N., Seidler, J., Durzok, R., Geinitz, H. & Brakebusch, C. β1-integrin-mediated signaling essentially contributes to cell survival after radiation-induced genotoxic injury. Oncogene 25, 1378–1390 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Hazlehurst, L. A., Argilagos, R. F. & Dalton, W. S. β1 integrin mediated adhesion increases Bim protein degradation and contributes to drug resistance in leukaemia cells. Br. J. Haematol. 136, 269–275 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Shain, K. H., Landowski, T. H. & Dalton, W. S. Adhesion-mediated intracellular redistribution of c-Fas-associated death domain-like IL-1-converting enzyme-like inhibitory protein-long confers resistance to CD95-induced apoptosis in hematopoietic cancer cell lines. J. Immunol. 168, 2544–2553 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Lwin, T. et al. Cell adhesion induces p27Kip1-associated cell-cycle arrest through down-regulation of the SCFSkp2 ubiquitin ligase pathway in mantle-cell and other non-Hodgkin B-cell lymphomas. Blood 110, 1631–1638 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bidard, F. C. et al. Disseminated tumor cells of breast cancer patients: a strong prognostic factor for distant and local relapse. Clin. Cancer Res. 14, 3306–3311 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Braun, S. et al. A pooled analysis of bone marrow micrometastasis in breast cancer. N. Engl. J. Med. 353, 793–802 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Braun, S. et al. Lack of effect of adjuvant chemotherapy on the elimination of single dormant tumor cells in bone marrow of high-risk breast cancer patients. J. Clin. Oncol. 18, 80–86 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Wiedswang, G. et al. Isolated tumor cells in bone marrow three years after diagnosis in disease-free breast cancer patients predict unfavorable clinical outcome. Clin. Cancer Res. 10, 5342–5348 (2004).

    Article  Google Scholar 

  11. Matsunaga, T. et al. Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nature Med. 9, 1158–1165 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Bellamy, W. T., Dalton, W. S., Gleason, M. C., Grogan, T. M. & Trent, J. M. Development and characterization of a melphalan-resistant human multiple myeloma cell line. Cancer Res. 51, 995–1002 (1991).

    CAS  PubMed  Google Scholar 

  13. Hazlehurst, L. A. et al. Genotypic and phenotypic comparisons of de novo and acquired melphalan resistance in an isogenic multiple myeloma cell line model. Cancer Res. 63, 7900–7906 (2003).

    CAS  PubMed  Google Scholar 

  14. Teicher, B. A. et al. Tumor resistance to alkylating agents conferred by mechanisms operative only in vivo. Science 247, 1457–1461 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Goldie, J. H. & Coldman, A. J. A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat Rep. 63, 1727–1733 (1979).

    CAS  PubMed  Google Scholar 

  16. Feller, N. et al. MRD parameters using immunophenotypic detection methods are highly reliable in predicting survival in acute myeloid leukaemia. Leukemia 18, 1380–1390 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Hess, C. J. et al. Gene expression profiling of minimal residual disease in acute myeloid leukaemia by novel multiplex-PCR-based method. Leukemia 18, 1981–1988 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Brisco, J. et al. Relationship between minimal residual disease and outcome in adult acute lymphoblastic leukemia. Blood 87, 5251–5256 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Heiss, M. M. et al. Minimal residual disease in gastric cancer: evidence of an independent prognostic relevance of urokinase receptor expression by disseminated tumor cells in the bone marrow. J. Clin. Oncol. 20, 2005–2016 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Campana, D. Status of minimal residual disease testing in childhood haematological malignancies. Br. J. Haematol. 143, 481–489 (2008).

    PubMed  PubMed Central  Google Scholar 

  21. Pui, C. H. & Evans, W. E. Treatment of acute lymphoblastic leukemia. N. Engl. J. Med. 354, 166–178 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Matsunaga, T. et al. Combination therapy of an anticancer drug with the FNIII14 peptide of fibronectin effectively overcomes cell adhesion-mediated drug resistance of acute myelogenous leukemia. Leukemia 22, 353–360 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Becker, P. S. et al. Very late antigen-4 function of myeloblasts correlates with improved overall survival for patients with acute myeloid leukemia. Blood 113, 866–874 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. de la Fuente, M. T. et al. Involvement of p53 in α4β1 integrin-mediated resistance of B-CLL cells to fludarabine. Biochem. Biophys. Res. Commun. 311, 708–712 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Folgiero, V. et al. Induction of ErbB-3 expression by α6β4 integrin contributes to tamoxifen resistance in ERβ1-negative breast carcinomas. PLoS ONE 3, e1592 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Yao, E. S. et al. Increased β1 integrin is associated with decreased survival in invasive breast cancer. Cancer Res. 67, 659–664 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Oshita, F. et al. Increased expression of integrin β1 is a poor prognostic factor in small-cell lung cancer. Anticancer Res. 22, 1065–1070 (2002).

    CAS  PubMed  Google Scholar 

  28. Graf, M. et al. Expression of MAC-1 (CD11b) in acute myeloid leukemia (AML) is associated with an unfavorable prognosis. Am. J. Hematol. 81, 227–235 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Vuoristo, M. et al. Increased gene expression levels of collagen receptor integrins are associated with decreased survival parameters in patients with advanced melanoma. Melanoma Res. 17, 215–223 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Nikkola, J. et al. Integrin chains β1 and αv as prognostic factors in human metastatic melanoma. Melanoma Res. 14, 29–37 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Sethi, T. et al. Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nature Med. 5, 662–668 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Sherman-Baust, C. A. et al. Remodeling of the extracellular matrix through overexpression of collagen VI contributes to cisplatin resistance in ovarian cancer cells. Cancer Cell 3, 377–386 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Recher, C. et al. Expression of focal adhesion kinase in acute myeloid leukemia is associated with enhanced blast migration, increased cellularity, and poor prognosis. Cancer Res. 64, 3191–3197 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Cario, G. et al. Distinct gene expression profiles determine molecular treatment response in childhood acute lymphoblastic leukemia. Blood 105, 821–826 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Flotho, C. et al. Genes contributing to minimal residual disease in childhood acute lymphoblastic leukemia: prognostic significance of CASP8AP2. Blood 108, 1050–1057 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. van Stijn, A. et al. Minimal residual disease in acute myeloid leukemia is predicted by an apoptosis-resistant protein profile at diagnosis. Clin. Cancer Res. 11, 2540–2546 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Flotho, C. et al. A set of genes that regulate cell proliferation predicts treatment outcome in childhood acute lymphoblastic leukemia. Blood 110, 1271–1277 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tlsty, T. D. & Coussens, L. M. Tumor stroma and regulation of cancer development. Annu. Rev. Pathol. 1, 119–150 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Finak, G. et al. Stromal gene expression predicts clinical outcome in breast cancer. Nature Med. 14, 518–527 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Hawsawi, N. M. et al. Breast carcinoma-associated fibroblasts and their counterparts display neoplastic-specific changes. Cancer Res. 68, 2717–2725 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Ohuchida, K. et al. Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions. Cancer Res. 64, 3215–3222 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Polyak, K., Haviv, I. & Campbell, I. G. Co-evolution of tumor cells and their microenvironment. Trends Genet. 25, 30–38 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Lenz, G. et al. Stromal gene signatures in large-B-cell lymphomas. N. Engl. J. Med. 359, 2313–2323 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Fridman, R. et al. Reconstituted basement membrane (matrigel) and laminin can enhance the tumorigenicity and the drug resistance of small cell lung cancer cell lines. Proc. Natl Acad. Sci. USA 87, 6698–6702 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mori, Y. et al. Anti-α4 integrin antibody suppresses the development of multiple myeloma and associated osteoclastic osteolysis. Blood 104, 2149–2154 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Park, C. C. et al. β1 integrin inhibitory antibody induces apoptosis of breast cancer cells, inhibits growth, and distinguishes malignant from normal phenotype in three dimensional cultures and in vivo. Cancer Res. 66, 1526–1535 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Park, C. C., Zhang, H. J., Yao, E. S., Park, C. J. & Bissell, M. J. β1 integrin inhibition dramatically enhances radiotherapy efficacy in human breast cancer xenografts. Cancer Res. 68, 4398–4405 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hazlehurst, L. A., Damiano, J. S., Buyuksal, I., Pledger, W. J. & Dalton, W. S. Adhesion to fibronectin via β1 integrins regulates p27kip1 levels and contributes to cell adhesion mediated drug resistance (CAM-DR). Oncogene 19, 4319–4327 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Fu, Y. et al. Overexpression of integrin β1 inhibits proliferation of hepatocellular carcinoma cell SMMC-7721 through preventing Skp2-dependent degradation of p27 via PI3K pathway. J. Cell Biochem. 102, 704–718 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Hartmann, T. N., Burger, J. A., Glodek, A., Fujii, N. & Burger, M. CXCR4 chemokine receptor and integrin signaling co-operate in mediating adhesion and chemoresistance in small cell lung cancer (SCLC) cells. Oncogene 24, 4462–4471 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Hodkinson, P. S. et al. ECM overrides DNA damage-induced cell cycle arrest and apoptosis in small-cell lung cancer cells through β1 integrin-dependent activation of PI3-kinase. Cell Death Differ. 13, 1776–1788 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Hoyt, D. G. et al. Integrin activation suppresses etoposide-induced DNA strand breakage in cultured murine tumor-derived endothelial cells. Cancer Res. 56, 4146–4149 (1996).

    CAS  PubMed  Google Scholar 

  53. Nefedova, Y., Landowski, T. H. & Dalton, W. S. Bone marrow stromal-derived soluble factors and direct cell contact contribute to de novo drug resistance of myeloma cells by distinct mechanisms. Leukemia 17, 1175–1182 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Borsellino, N. et al. Blocking signaling through the Gp130 receptor chain by interleukin-6 and oncostatin M inhibits PC-3 cell growth and sensitizes the tumor cells to etoposide and cisplatin-mediated cytotoxicity. Cancer 85, 134–144 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Catlett-Falcone, R. et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 10, 105–115 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Duan, Z. et al. Signal transducers and activators of transcription 3 pathway activation in drug-resistant ovarian cancer. Clin. Cancer Res. 12, 5055–5063 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Frassanito, M. A., Cusmai, A., Iodice, G. & Dammacco, F. Autocrine interleukin-6 production and highly malignant multiple myeloma: relation with resistance to drug-induced apoptosis. Blood 97, 483–489 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Perez, L. E. et al. Bone marrow stroma confers resistance to Apo2 ligand/TRAIL in multiple myeloma in part by regulating c-FLIP. J. Immunol. 180, 1545–1555 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Voorhees, P. M. et al. Inhibition of interleukin-6 signaling with CNTO 328 enhances the activity of bortezomib in preclinical models of multiple myeloma. Clin. Cancer Res. 13, 6469–6478 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Allinen, M. et al. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6, 17–32 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Arnulf, B. et al. Phenotypic and functional characterization of bone marrow mesenchymal stem cells derived from patients with multiple myeloma. Leukemia 21, 158–163 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Sanz-Rodriguez, F., Hidalgo, A. & Teixido, J. Chemokine stromal cell-derived factor-1α modulates VLA-4 integrin-mediated multiple myeloma cell adhesion to CS-1/fibronectin and VCAM-1. Blood 97, 346–351 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Kettritz, R., Choi, M., Rolle, S., Wellner, M. & Luft, F. C. Integrins and cytokines activate nuclear transcription factor-κB in human neutrophils. J. Biol. Chem. 279, 2657–2665 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Shain, K. H. et al. β1 integrin adhesion enhances IL-6-mediated STAT3 signaling in myeloma cells: implications for microenvironment influence on tumor survival and proliferation. Cancer Res. 69, 1009–1015 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tancred, T. M., Belch, A. R., Reiman, T., Pilarski, L. M. & Kirshner, J. Altered expression of fibronectin and collagens I and IV in multiple myeloma and monoclonal gammopathy of undetermined significance. J. Histochem. Cytochem. 57, 239–247 (2008).

    Article  PubMed  CAS  Google Scholar 

  67. White, D. E. et al. Addressing the role of cell adhesion in tumor cell dormancy. Cell Cycle 5, 1756–1759 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. St. Croix, B. et al. Impact of the cyclin-dependent kinase inhibitor p27Kip1 on resistance of tumor cells to anticancer agents. Nature Med. 2, 1204–1210 (1996).

    Article  Google Scholar 

  69. St. Croix, B. et al. Reversal by hyaluronidase of adhesion-dependent multicellular drug resistance in mammary carcinoma cells. J. Natl Cancer Inst. 88, 1285–1296 (1996).

    Article  CAS  Google Scholar 

  70. White, D. E. et al. Targeted disruption of β1-integrin in a transgenic mouse model of human breast cancer reveals an essential role in mammary tumor induction. Cancer Cell 6, 159–170 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Weaver, V. M. et al. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J. Cell Biol. 137, 231–245 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Goodison, S. et al. Prolonged dormancy and site-specific growth potential of cancer cells spontaneously disseminated from nonmetastatic breast tumors as revealed by labeling with green fluorescent protein. Clin. Cancer Res. 9, 3808–3814 (2003).

    CAS  PubMed  Google Scholar 

  73. Naumov, G. N. et al. Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res. 62, 2162–2168 (2002).

    CAS  PubMed  Google Scholar 

  74. Pantel, K. et al. Differential expression of proliferation-associated molecules in individual micrometastatic carcinoma cells. J. Natl Cancer Inst. 85, 1419–1424 (1993).

    Article  CAS  PubMed  Google Scholar 

  75. Gong, J., Ko, T. C. & Brattain, M. G. Disruption of fibronectin binding to the α5β1 integrin stimulates the expression of cyclin-dependent kinases and DNA synthesis through activation of extracellular signal-regulated kinase. J. Biol. Chem. 273, 1662–1669 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Fischer, C. et al. Galectin-1 interacts with the α5β1 fibronectin receptor to restrict carcinoma cell growth via induction of p21 and p27. J. Biol. Chem. 280, 37266–37277 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Henriet, P., Zhong, Z. D., Brooks, P. C., Weinberg, K. I. & DeClerck, Y. A. Contact with fibrillar collagen inhibits melanoma cell proliferation by up-regulating p27KIP1. Proc. Natl Acad. Sci. USA 97, 10026–10031 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nefedova, Y., Cheng, P., Alsina, M., Dalton, W. S. & Gabrilovich, D. I. Involvement of Notch-1 signaling in bone marrow stroma-mediated de novo drug resistance of myeloma and other malignant lymphoid cell lines. Blood 103, 3503–3510 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Bisping, G. et al. Paracrine interactions of basic fibroblast growth factor and interleukin-6 in multiple myeloma. Blood 101, 2775–2783 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Dankbar, B. et al. Vascular endothelial growth factor and interleukin-6 in paracrine tumor–stromal cell interactions in multiple myeloma. Blood 95, 2630–2636 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Stupp, R. & Ruegg, C. Integrin inhibitors reaching the clinic. J. Clin. Oncol. 25, 1637–1638 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Cianfrocca, M. E. et al. Phase 1 trial of the antiangiogenic peptide ATN-161 (Ac-PHSCN-NH2), a beta integrin antagonist, in patients with solid tumours. Br. J. Cancer 94, 1621–1626 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. McNeel, D. G. et al. Phase I trial of a monoclonal antibody specific for αvβ3 integrin (MEDI-522) in patients with advanced malignancies, including an assessment of effect on tumor perfusion. Clin. Cancer Res. 11, 7851–7860 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Mullamitha, S. A. et al. Phase I evaluation of a fully human anti-αv integrin monoclonal antibody (CNTO 95) in patients with advanced solid tumors. Clin. Cancer Res. 13, 2128–2135 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Reardon, D. A. et al. Randomized phase II study of cilengitide, an integrin-targeting arginine-glycine-aspartic acid peptide, in recurrent glioblastoma multiforme. J. Clin. Oncol. 26, 5610–5617 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Sondergaard, T. E. et al. A phase II clinical trial does not show that high dose simvastatin has beneficial effect on markers of bone turnover in multiple myeloma. Hematol. Oncol. 27, 17–22 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Weitz-Schmidt, G. et al. Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site. Nature Med. 7, 687–692 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Weitz-Schmidt, G., Welzenbach, K., Dawson, J. & Kallen, J. Improved lymphocyte function-associated antigen-1 (LFA-1) inhibition by statin derivatives: molecular basis determined by x-ray analysis and monitoring of LFA-1 conformational changes in vitro and ex vivo. J. Biol. Chem. 279, 46764–46771 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Denoyelle, C. et al. Molecular mechanism of the anti-cancer activity of cerivastatin, an inhibitor of HMG-CoA reductase, on agressive human breast cancer cells. Cell Signal 15, 327–338 (2003)

    Article  CAS  PubMed  Google Scholar 

  90. Schmidmaier, R. et al. The HMG-CoA reductase inhibitor simvastatin overcomes cell adhesion-mediated drug resistance in multiple myeloma by geranylgeranylation of Rho protein and activation of Rho kinase. Blood 104, 1825–1832 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Kinbara, K., Goldfinger, L. E., Hansen, M., Chou, F. L. & Ginsberg, M. H. Ras GTPases: integrins' friends or foes? Nature Rev. Mol. Cell Biol. 4, 767–776 (2003).

    Article  CAS  Google Scholar 

  92. Azab, A. K. et al. Rho-A and Rac-1 GTPases play major and differential roles in SDF1-induced cell adhesion and chemotaxis in multiple myeloma. Blood 114, 619–629 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Schmidmaier, R. et al. First clinical experience with simvastatin to overcome drug resistance in refractory multiple myeloma. Eur. J. Haematol. 79, 240–243 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Maeda, T., Kawane, T. & Horiuchi, N. Statins augment vascular endothelial growth factor expression in osteoblastic cells via inhibition of protein prenylation. Endocrinology 144, 681–692 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Mundy, G. et al. Stimulation of bone formation in vitro and in rodents by statins. Science 286, 1946–1949 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Landowski, T. H., Olashaw, N. E., Agrawal, D. & Dalton, W. S. Cell adhesion-mediated drug resistance (CAM-DR) is associated with activation of NF-κB (RelB/p50) in myeloma cells. Oncogene 22, 2417–2421 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. San Miguel, J. F. et al. Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N. Engl. J. Med. 359, 906–917 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Lin, B. et al. The vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584 inhibits growth and migration of multiple myeloma cells in the bone marrow microenvironment. Cancer Res. 62, 5019–5026 (2002).

    CAS  PubMed  Google Scholar 

  99. Bisping, G. et al. Bortezomib, dexamethasone, and fibroblast growth factor receptor 3-specific tyrosine kinase inhibitor in t(4;14) myeloma. Clin. Cancer Res. 15, 520–531 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Burger, M. et al. Small peptide inhibitors of the CXCR4 chemokine receptor (CD184) antagonize the activation, migration, and antiapoptotic responses of CXCL12 in chronic lymphocytic leukemia B cells. Blood 106, 1824–1830 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Zeng, Z. et al. Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood 113, 6215–6224 (2008).

    Article  PubMed  CAS  Google Scholar 

  102. Goldie, J. H. & Coldman, A. J. Quantitative model for multiple levels of drug resistance in clinical tumors. Cancer Treat. Rep. 67, 923–931 (1983).

    CAS  PubMed  Google Scholar 

  103. Hazlehurst, L. A. et al. Cell adhesion to fibronectin (CAM-DR) influences acquired mitoxantrone resistance in U937 cells. Cancer Res 66, 2338–2345 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Moshaver, B. et al. Chemotherapeutic treatment of bone marrow stromal cells strongly affects their protective effect on acute myeloid leukemia cell survival. Leuk. Lymphoma 49, 134–148 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Spiotto, M. T., Rowley, D. A. & Schreiber, H. Bystander elimination of antigen loss variants in established tumors. Nature Med. 10, 294–298 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Zhang, B. et al. Induced sensitization of tumor stroma leads to eradication of established cancer by T cells. J. Exp. Med. 204, 49–55 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhang, B. et al. Equilibrium between host and cancer caused by effector T cells killing tumor stroma. Cancer Res. 68, 1563–1571 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Kirshner, J. et al. A unique three-dimensional model for evaluating the impact of therapy on multiple myeloma. Blood 112, 2935–2945 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William S. Dalton.

Related links

Related links

DATABASES

National Cancer Institute Drug Dictionary 

bortezomib

cytarabine

cytosine arabinoside

dexamethasone

melphalan

prednisone

simvastatin

FURTHER INFORMATION

William S. Dalton's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meads, M., Gatenby, R. & Dalton, W. Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat Rev Cancer 9, 665–674 (2009). https://doi.org/10.1038/nrc2714

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2714

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing