Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Development of anti-TNF therapy for rheumatoid arthritis

Abstract

The aetiology of systemic, autoimmune, chronic inflammatory diseases — such as rheumatoid arthritis — is not known, and their pathogenesis is complex and multifactorial. However, progress in the characterization of intercellular mediators — proteins that are now known as cytokines — has led to the realization that one cytokine, tumour-necrosis factor (TNF; previously known as TNF-α), has an important role in the pathogenesis of rheumatoid arthritis. This discovery heralded a new era of targeted and highly effective therapeutics for rheumatoid arthritis and, subsequently, other chronic inflammatory diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The cytokine network in rheumatoid arthritis.
Figure 2: Progress in clinical trials — 1992–1997.
Figure 3: Anti-TNF biologicals.

References

  1. Taniguchi, T., Ohno, S., Fujii-Kuriyama, Y. & Muramatsu, H. The nucleotide sequence of human fibroblast interferon cDNA. Gene 10, 11–15 (1980).

    Article  CAS  PubMed  Google Scholar 

  2. Nagata, S. et al. Synthesis in E. coli of a polypeptide with human leukocyte interferon activity. Nature 284, 316–320 (1980).

    Article  CAS  PubMed  Google Scholar 

  3. Gray, P. W. et al. Expression of human immune interferon cDNA in E. coli and monkey cells. Nature 295, 503–508 (1982).

    Article  CAS  PubMed  Google Scholar 

  4. Gray, P. W. et al. Cloning and expression of cDNA for human lymphotoxin, a lymphokine with tumor-necrosis factor activity. Nature 312, 721–724 (1984).

    Article  CAS  PubMed  Google Scholar 

  5. Pennica, D. et al. Human tumor-necrosis factor: precursor structure expression and homology to lymphotoxin. Nature 312, 724–729 (1984).

    Article  CAS  PubMed  Google Scholar 

  6. Oppenheim, J. J. & Feldmann, M. E. Cytokine Reference, Vol 1: Ligands (Academic Press, London, 2001) http://www.apnet.com/cytokinereference

    Google Scholar 

  7. Cody, J. et al. Recombinant human erythropoietin for chronic renal failure anaemia in pre-dialysis patients. Cochrane Database Sys. Rev. 4, CD003266 (2001).

    Google Scholar 

  8. Morstyn, G., Foote, M. A., Walker, T. & Molineux, G. Filgrastim (r-metHuG-CSF) in the 21st century: SD/01. Acta Haematol. 105, 151–155 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Coley, W. B. The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. 1893. Clin. Orthop. 262, 3–11 (1991).

    Google Scholar 

  10. Carswell, E. A. et al. An endotoxin-induced serum factor that causes necrosis of tumors. Proc. Natl Acad. Sci. USA 72, 3666–3670 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aggarwal, B. B. et al. Human tumor-necrosis factor production, purification and characterization. J. Biol. Chem. 260, 2345–2354 (1985).

    CAS  PubMed  Google Scholar 

  12. Beutler, B., Milsark, I. W. & Cerami, A. C. Passive immunization against cachectin/tumor-necrosis factor protects mice from lethal effect of endotoxin. Science 229, 869–871 (1985).

    Article  CAS  PubMed  Google Scholar 

  13. Lee, D. M. & Weinblatt, M. E. Rheumatoid arthritis. Lancet 358, 903–911 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Harris, E. D. Jr. Rheumatoid arthritis. Pathophysiology and implications for therapy. N. Engl. J. Med. 322, 1277–1289 (1990).

    Article  PubMed  Google Scholar 

  15. Koch, A. E. et al. Vascular endothelial growth factor. A cytokine-modulating endothelial function in rheumatoid arthritis. J. Immunol. 152, 4149–4156 (1994).

    CAS  PubMed  Google Scholar 

  16. Fontana, A. et al. Interleukin-1 activity in the synovial fluid of patients with rheumatoid arthritis. Rheumatol. Int. 2, 49–53 (1982).

    Article  CAS  PubMed  Google Scholar 

  17. Di Giovine, F. S., Malawista, S. E., Nuki, G. & Duff, G. W. Interleukin-1 (IL-1) as a mediator of crystal arthritis. Stimulation of T-cell and synovial fibroblast mitogenesis by urate crystal-induced IL-1. J. Immunol. 138, 3213–3218 (1987).

    CAS  PubMed  Google Scholar 

  18. Buchan, G., Barrett, K., Turner, M., Chantry, D., Maini, R. N. & Feldmann, M. Interleukin-1 and tumour-necrosis factor mRNA expression in rheumatoid arthritis: prolonged production of IL-1α. Clin. Exp. Immunol. 73, 449–455 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Chu, C. Q., Field, M., Feldmann, M. & Maini, R. N. Localization of tumor-necrosis factor-α in synovial tissues and at the cartilage–pannus junction in patients with rheumatoid arthritis. Arthritis Rheum. 34, 1125–1132 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Saxne, T., Palladino, M. A. Jr, Heinegard, D., Talal, N. & Wollheim, F. A. Detection of tumor-necrosis factor-α but not tumor-necrosis factor-β in rheumatoid arthritis synovial fluid and serum. Arthritis Rheum. 31, 1041–1045 (1988).

    Article  CAS  PubMed  Google Scholar 

  21. Brennan, F. M., Chantry, D., Jackson, A. M., Maini, R. N. & Feldmann, M. Cytokine production in culture by cells isolated from the synovial membrane. J. Autoimmun. 2, 177–186 (1989).

    Article  PubMed  Google Scholar 

  22. Feldmann, M., Brennan, F. M. & Maini, R. N. Role of cytokines in rheumatoid arthritis. Annu. Rev. Immunol. 14, 397–440 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Saklatvala, J., Sarsfield, S. J. & Townsend, Y. Purification of two immunologically different leucocyte proteins that cause cartilage resorption, lymphocyte activation and fever. J. Exp. Med. 162, 1208–1215 (1985).

    Article  CAS  PubMed  Google Scholar 

  24. Brennan, F. M., Chantry, D., Jackson, A., Maini, R. & Feldmann, M. Inhibitory effect of TNF-α antibodies on synovial cell interleukin-1 production in rheumatoid arthritis. Lancet 2, 244–247 (1989).

    Article  CAS  PubMed  Google Scholar 

  25. Butler, D. M., Maini, R. N., Feldmann, M. & Brennan, F. M. Modulation of proinflammatory cytokine release in rheumatoid synovial membrane cell cultures. Comparison of monoclonal anti-TNFα antibody with the IL-1 receptor antagonist. Eur. Cytokine Netw. 6, 225–230 (1995).

    CAS  PubMed  Google Scholar 

  26. Alvaro-Garcia, J. M., Zvaifler, N. J., Brown, C. B., Kaushansky, L. & Firestein, G. S. Cytokines in chronic inflammatory arthritis. VI. Analysis of the synovial cells involved in granulocyte–macrophage colony-stimulating factor production and gene expression in rheumatoid arthritis and its regulation by IL-1 and TNFα. J. Immunol. 146, 3365–3371 (1991).

    Google Scholar 

  27. Haworth, C., Brennan, F. M., Chantry, D., Turner, M., Maini, R. N. & Feldmann, M. Expression of granulocyte–macrophage colony-stimulating factor in rheumatoid arthritis: regulation by tumor-necrosis factor-α. Eur. J. Immunol. 21, 2575–2579 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Holmdahl, R. et al. Type II collagen autoimmunity in animals and provocations leading to arthritis. Immunol. Rev. 118, 193–232 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Williams, R. O., Feldmann, M. & Maini, R. N. Anti-tumor necrosis factor ameliorates joint disease in murine collagen-induced arthritis. Proc. Natl Acad. Sci. USA 89, 9784–9788 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thorbecke, G. J. et al. Involvement of endogenous tumor-necrosis factor-α and transforming growth factor-β during induction of collagen type II arthritis in mice. Proc. Natl Acad. Sci. USA 89, 7375–7379 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Piguet, P. F. et al. Evolution of collagen arthritis in mice is arrested by treatment with anti-tumour necrosis factor (TNF) antibody or a recombinant soluble TNF receptor. Immunology 77, 510–514 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kruys, V., Kemmer, K., Shakhov, A., Jongeneel, V. & Beutler, B. Constitutive activity of the tumor-necrosis factor promoter is cancelled by the 3′ untranslated region in nonmacrophage cell lines; a transdominant factor overcomes this suppressive effect. Proc. Natl Acad. Sci. USA 89, 673–677 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Keffer, J. et al. Transgenic mice expressing human tumour-necrosis factor: a predictive genetic model of arthritis. EMBO J. 10, 4025–4031 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Peppel, K., Crawford, D. & Beutler, B. A TNF receptor–IgG heavy chain chimeric protein as a bivalent antagonist of TNF activity. J. Exp. Med. 174, 1483–1489 (1991).

    Article  CAS  PubMed  Google Scholar 

  35. Capon, D. J. et al. Designing CD4 immunoadhesions for AIDS therapy. Nature 337, 525–531 (1989).

    Article  CAS  PubMed  Google Scholar 

  36. Knight, D. M. et al. Construction and initial characterization of a mouse–human chimeric anti-TNF antibody. Mol. Immunol. 30, 1443–1453 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Feldmann, M. et al. Cytokine production in the rheumatoid joint: implications for treatment. Ann. Rheum. Dis. 49, 480–486 (1990).

    PubMed  Google Scholar 

  38. Elliott, M. J. et al. Treatment of rheumatoid arthritis with chimeric monoclonal antibodies to tumor-necrosis factor-α. Arthritis Rheum. 36, 1681–1690 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Elliott, M. J. et al. Repeated therapy with monoclonal antibody to tumour-necrosis factor-α (cA2) in patients with rheumatoid arthritis. Lancet 344, 1125–1127 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Oudin, J. & Michel, M. A new form of allotype of rabbit γ-globulins apparently correlated with antibody function and specificity. C. R. Acad. Sci. 257, 805–808 (1963).

    CAS  Google Scholar 

  41. Maini, R. N. et al. Therapeutic efficacy of multiple intravenous infusions of anti-tumor necrosis factor-α monoclonal antibody combined with low-dose weekly methotrexate in rheumatoid arthritis. Arthritis Rheum. 41, 1552–1563 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Dresser, D. W. & Mitchison, N. A. The mechanism of immunological paralysis. Adv. Immunol. 8, 129–181 (1968).

    Article  CAS  PubMed  Google Scholar 

  43. Chiller, J. M., Habicht, G. S. & Weigle, W. O. Cellular sites of immunologic unresponsiveness. Proc. Natl Acad. Sci. USA 65, 551–556 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Williams, R. O., Mason, L. J., Feldmann, M. & Maini, R. N. Synergy between anti-CD4 and anti-tumor necrosis factor in the amelioration of established collagen-induced arthritis. Proc. Natl Acad. Sci. USA 91, 2762–2766 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Genestier, L. et al. Immunosuppressive properties of methotrexate: apoptosis and clonal deletion of activated peripheral T cells. J. Clin. Invest. 102, 322–328 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Feldmann, M. & Maini, R. N. Anti-TNF-α therapy for rheumatoid arthritis: what have we learned? Annu. Rev. Immunol. 19, 163–196 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Maini, R. N. et al. Randomised phase III trial of infliximab (chimeric anti-TNF-α monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate. Lancet 354, 1932–1939 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Lipsky, P. E. et al. Infliximab and methotrexate in the treatment of rheumatoid arthritis. N. Engl. J. Med. 343, 1594–1602 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Lipsky, P. E. et al. 102-week clinical and radiological results from the ATTRACT trial: a two-year, randomized, controlled, phase III trial of infliximab (Remicade) in patients with active rheumatoid arthritis despite methotrexate. Arthritis Rheum. 47, S242 (2000).

  50. Rankin, E. C. et al. A double-blind, placebo-controlled, ascending-dose trial of the recombinant humanised anti-TNF-α antibody CDP571 in patients with rheumatoid arthritis (RA): a preliminary report. Arthritis Rheum. 37, S295 (1994).

  51. Sander, O. et al. Neutralization of TNF by Lenercept (TNFR55–IgG1,Ro 45-2081) in patients with rheumatoid arthritis treated for three months: results of a European phase II trial. Arthritis Rheum. 39, S242 (1996).

    Google Scholar 

  52. Moreland, L. W. et al. Treatment of rheumatoid arthritis with a recombinant human tumor-necrosis factor receptor (p75)–Fc fusion protein. N. Engl. J. Med. 337, 141–147 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Moreland, L. W. et al. Recombinant soluble tumor-necrosis factor receptor (p80) fusion protein: toxicity and dose-finding trial in refractory rheumatoid arthritis. J. Rheumatol. 23, 1849–1855 (1996).

    CAS  PubMed  Google Scholar 

  54. Kempeni, J. Preliminary results of early clinical trials with the fully human anti-TNF monoclonal antibody D2E7. Ann. Rheum. Dis. 58, I70–I72 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Edwards, C. K. I. PEGylated recombinant human soluble tumour-necrosis factor receptor type I (r-Hu-sTNF-RI): novel high affinity TNF receptor designed for chronic inflammatory diseases. Ann. Rheum. Dis. 58, I73–81 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hazleman, B. et al. Efficacy of a novel PEGylated humanised anti-TNF fragment (CDP870) in patients with rheumatoid arthritis. Rheumatology 39, 87 (2000).

    Google Scholar 

  57. Ulfgren, A. K. et al. Systemic anti-tumor necrosis factor-α therapy in rheumatoid arthritis down-regulates synovial tumor-necrosis factor-α synthesis. Arthritis Rheum. 43, 2391–2396 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Lacraz, S., Isler, P., Vey, E., Welgus, H. G. & Dayer, J. M. Direct contact between T lymphocytes and monocytes is a major pathway for induction of metalloproteinase expression. J. Biol. Chem. 269, 22027–22033 (1994).

    CAS  PubMed  Google Scholar 

  59. Paleolog, E. M., Hunt, M., Elliott, M. J., Feldmann, M., Maini, R. N. & Woody, J. N. Deactivation of vascular endothelium by monoclonal anti-tumor necrosis factor-α antibody in rheumatoid arthritis. Arthritis Rheum. 39, 1082–1091 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Ballara, S. et al. Raised serum vascular endothelial growth factor levels are associated with destructive change in inflammatory arthritis. Arthritis Rheum. 44, 2055–2064 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Davis, D. et al. Anaemia of chronic disease in rheumatoid arthritis: in vivo effects of tumour necrosis factor-α blockade. Br. J. Rheumatol. 36, 950–956 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Finck, B. et al. A phase III trial of etanercept versus methotrexate (MTX) in early rheumatoid arthritis (Enbrel ERA trial). Arthritis Rheum. 42, S117 (1999).

    Google Scholar 

  63. Rau, R. et al. Long-term treatment with the fully human anti-TNF antibody D2E7 slows radiographic disease progression in rheumatoid arthritis. Arthritis Rheum. 42, S400 (1999).

  64. Waldmann, H. Manipulation of T-cell responses with monoclonal antibodies. Annu. Rev. Immunol. 7, 407–444 (1989).

    Article  CAS  PubMed  Google Scholar 

  65. van Dulleman, H. M. et al. Treatment of Crohn's disease with anti-tumor necrosis factor chimeric monoclonal antibody (cA2). Gastroenterology 109, 129–135 (1995).

    Article  Google Scholar 

  66. Present, D. H. et al. Infliximab for the treatment of fistulas in patients with Crohn's disease. N. Engl. J. Med. 340, 1398–1405 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Lovell, D. J. et al. Etanercept in children with polyarticular juvenile rheumatoid arthritis. Pediatric Rheumatology Collaborative Study Group. N. Engl. J. Med. 342, 763–769 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Brandt, J. et al. Successful treatment of active ankylosing spondylitis with the anti-tumor necrosis factor-α monoclonal antibody infliximab. Arthritis Rheum. 43, 1346–1352 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Mease, P. J. et al. Etanercept in the treatment of psoriatic arthritis and psoriasis: a randomised trial. Lancet 356, 385–390 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Chaudhari, U. et al. Efficacy and safety of infliximab monotherapy for plaque-type psoriasis: a randomised trial. Lancet 357, 1842–1847 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Lenercept Multiple Sclerosis Study Group and the University of British Columbia MS/MRI Analysis Group. TNF neutralization in MS: results of a randomized, placebo-controlled multicenter study. Neurology 53, 444–445 (1999).

  72. Cope, A. P. et al. Chronic exposure to tumor necrosis factor (TNF) in vitro impairs the activation of T cells through the T-cell receptor/CD3 complex; reversal in vivo by anti-TNF antibodies in patients with rheumatoid arthritis. J. Clin. Invest. 94, 749–760 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Deswal, A. et al. Safety and efficacy of a soluble p75 tumor necrosis factor receptor (Enbrel, etanercept) in patients with advanced hear failure. Circulation 99, 3224–3226 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Keane, J. et al. Tuberculosis associated with Infliximab, a tumor-necrosis factor-α neutralizing agent. N. Engl. J. Med. 345, 1098–1104 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Feldmann, M., Elliott, M. J., Woody, J. N. & Maini, R. N. Anti-tumor necrosis factor-α therapy of rheumatoid arthritis. Adv. Immunol. 64, 283–350 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Pisetsky, D. S. & St Clair, E. W. Progress in the treatment of rheumatoid arthritis. JAMA 286, 2787–2790 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Day, R. Adverse reactions to TNF-α inhibitors in rheumatoid arthritis. Lancet 359, 540–541 (2002).

    Article  PubMed  Google Scholar 

  78. Brennan, F. M. et al. Evidence that rheumatoid arthritis synovial T cells are similar to cytokine-activated T cells. Arthritis Rheum. 46, 31–41 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Isler, P., Vey, E., Zhang, J. H. & Dayer, J. M. Cell-surface glycoproteins expressed on activated human T cells induce production of interleukin–1β by monocytic cells: a possible role of CD69. Eur. Cytokine Netw. 4, 15–23 (1993).

    CAS  PubMed  Google Scholar 

  80. Elliott, M. J. et al. Randomised double-blind comparison of chimeric monoclonal antibody to tumour-necrosis factor-α (cA2) versus placebo in rheumatoid arthritis. Lancet 344, 1105–1110 (1994).

    Article  CAS  PubMed  Google Scholar 

  81. Paulus, H. E., Egger, M. J., Ward, J. R., Williams, H. J. & Cooperative Systemic Studies of Rheumatic Disease Group. Analysis of improvement in individual rheumatoid arthritis patients treated with disease-modifying anti-rheumatic drugs, based on the findings in patients treated with placebo. Arthritis Rheum. 33, 477–484 (1990).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This history of anti-TNF therapy owes its existence to the research of a great many talented and dedicated scientists, both basic and clinical, all of whose work cannot be cited in this type of review. It also owes its existence to long-term dedicated collaborators, chiefly R. Maini, with whom it has been a great privilege and pleasure to work in this field for 16 years, F. Brennan and many other scientists at KIR, and J. N. Woody of Centocor, but also to many cooperating clinicians. An important group in research is the patients, who are keen to take part in clinical trials, even if it is only for the benefit of future generations of patients. The work that led to the development of the principle of anti-TNF therapy was nearly entirely funded by the Arthritis Research Campaign (ARC) in the United Kingdom. Its long-term investment in this field since 1986 has been rewarded by the benefits to its patient supporters, which will increase following the positive NICE evaluation of anti-TNF therapy.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Locuslink

CD4

collagen type II

EPO

G-CSF

GM-CSF

IFN-α

IFN-β

IFN-γ

IL-1

IL-6

IL-8

IL-12

IL-15

IL-17

IL-18

LT

Tgfβ1

TNF

VEGF

Medscape DrugInfo

etanercept

infliximab

methotrexate

OMIM

ankylosing spondylitis

Crohn's disease

juvenile rheumatoid arthritis

psoriasis

rheumatoid arthritis

FURTHER INFORMATION

Arthritis Research

Arthritis Research Campaign

Cytokine Reference

Encyclopedia of Life Sciences

tumour-necrosis factors

rheumatoid arthritis

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feldmann, M. Development of anti-TNF therapy for rheumatoid arthritis. Nat Rev Immunol 2, 364–371 (2002). https://doi.org/10.1038/nri802

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri802

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing