Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of complement in antibody-mediated rejection in kidney transplantation

Abstract

Over the past decade, several studies have suggested that the complement system has an active role in both acute and chronic allograft rejection. These studies have been facilitated by improved techniques to detect antibody-mediated organ rejection, including immunohistological staining for C4d deposition in the allograft and solid-phase assays that identify donor-specific alloantibodies (DSAs) in the serum of transplant recipients. Studies with eculizumab, a humanized monoclonal antibody directed against complement component C5, have shown that activation of the terminal complement pathway is necessary for the development of acute antibody-mediated rejection in recipients of living-donor kidney allografts who have high levels of DSAs. The extent to which complement activation drives chronic antibody-mediated injury leading to organ rejection is less clear. In chronic antibody-mediated injury, early complement activation might facilitate chemotaxis of inflammatory cells into the allograft in a process that later becomes somewhat independent of DSA levels and complement factors. In this Review, we discuss the different roles that the complement system might have in antibody-mediated allograft rejection, with specific emphasis on renal transplantation.

Key Points

  • Activation of the complement cascade by donor-specific alloantibodies (DSAs) might be the primary mechanism of acute antibody-mediated rejection (AMR) in sensitized kidney transplant recipients

  • Complement activation might cause injury by enhancing cellular infiltration and inflammation or by directly damaging the allograft

  • Blockade of complement component C5 with eculizumab reduces the incidence of early AMR in sensitized renal transplant recipients

  • The role of complement activation in chronic antibody-mediated injury is not yet clear: complement probably initiates intragraft inflammation, but might not be necessary for maintaining it.

  • Complement components might modulate T-cell activity and adaptive immune responses involved in allograft rejection

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The role of the classical complement pathway in acute AMR rejection in sensitized renal transplant recipients.
Figure 2: A comparison of histological features in renal allograft biopsy specimens from sensitized renal transplant recipients treated a | with and b | without the C5 antibody, eculizumab.
Figure 3: Possible mechanisms of chronic antibody-mediated injury in renal transplant recipients.

Similar content being viewed by others

References

  1. Starzl, T. E. et al. The use of cyclosporine A and prednisone in cadaver kidney transplantation. Surg. Gynecol. Obstet. 151, 17–26 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ferguson, R. Acute rejection episodes—best predictor of longterm primary cadaveric renal transplant survival. Clin. Transplant. 8, 328–331 (1994).

    CAS  PubMed  Google Scholar 

  3. Tantravahi, J. R., Womer K. L. & Kaplan, B. Why hasn't eliminating acute rejection improved graft survival? Ann. Rev. Med. 58, 369–385 (2007).

    Article  CAS  Google Scholar 

  4. Cosio, F. G. et al. Significance and implications of capillaritis during acute rejection of kidney allografts. Transplantation 89, 1088–1094 (2010).

    Article  Google Scholar 

  5. Stegall, M. D., Gloor, J., Winters, J. L., Moore, S. B. & Degoey, S. A comparison of plasmapheresis versus high-dose IVIG desensitization in renal allograft recipients with high levels of donor specific alloantibody. Am. J. Transplant. 6, 346–351 (2006).

    Article  CAS  Google Scholar 

  6. Patel, R. & Terasaki P. I. Significance of the positive crossmatch test in kidney transplantation. N. Engl. J. Med. 280, 735–739 (1969).

    Article  CAS  Google Scholar 

  7. Issa, N. et al. Transplant glomerulopathy: risk and prognosis related to anti-human leukocyte antigen class II antibody levels. Transplantation 15, 681–685 (2008).

    Article  Google Scholar 

  8. Feucht, H. E. et al. Vascular deposition of complement-split products in kidney allografts with cell-mediated rejection. Clin. Exp. Immunol. 86, 464–470 (1991).

    Article  CAS  Google Scholar 

  9. Cohen, D. et al. Pros and cons for C4d as a biomarker. Kidney Int. 81, 628–639 (2012).

    Article  CAS  Google Scholar 

  10. Trpkov, K. et al. Pathologic features of acute renal allograft rejection associated with donor-specific alloantibody: analysis using the Banff grading schema. Transplantation 61, 1586–1592 (1996).

    Article  CAS  Google Scholar 

  11. Pei, R., Lee, J., Chen, T., Rojo, S. & Terasaki, P. I. Flow cytometric detection of HLA antibodies using a spectrum of microbeads. Hum. Immunol. 60, 1293–1302 (1999).

    Article  CAS  Google Scholar 

  12. Solez, K. et al. Banff 07 classification of renal allograft pathology: updates and future directions. Am. J. Transplant. 8, 753–760 (2008).

    Article  CAS  Google Scholar 

  13. Montgomery, R. A. & Zachary, A. A. Transplanting patients with a positive donor-specific crossmatch: a single center's perspective. Pediatr. Transplant. 8, 535–542 (2004).

    Article  Google Scholar 

  14. Bartel, G. et al. Peritransplant immunoadsorption for positive crossmatch deceased donor kidney transplantation. Am. J. Transplant. 10, 2033–2042 (2010).

    Article  CAS  Google Scholar 

  15. Vo, A. A. et al. Rituximab and intravenous immune globulin for desensitization during renal transplantation. N. Engl. J. Med. 359, 242–251 (2008).

    Article  CAS  Google Scholar 

  16. Burns, J. M. et al. Alloantibody levels and acute humoral rejection early after positive crossmatch kidney transplantation. Am. J. Transplant. 8, 2684–2694 (2008).

    Article  CAS  Google Scholar 

  17. Rother, R. P., Rollins, S. A., Mojcik, C. F., Brodsky R. A. & Bell, L. Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nat. Biotechnol. 25, 1256–1264 (2007).

    Article  CAS  Google Scholar 

  18. Hillmen, P. et al. The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. N. Engl. J. Med. 355, 1233–1243 (2006).

    Article  CAS  Google Scholar 

  19. Stegall, M. D. et al. Terminal complement decreases antibody-mediated rejection in sensitized renal transplant recipients. Am. J. Transplant. 11, 2405–2413 (2011).

    Article  CAS  Google Scholar 

  20. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  21. Lee, P.-C. et al. All chronic rejection failures of kidney transplants were preceded by the development of HLA antibodies. Transplantation 74, 1192–1194 (2003).

    Article  Google Scholar 

  22. Gaston, R. S. et al. Evidence for antibody mediated injury as a major determinant of late kidney allograft failure. Transplantation 90, 68–74 (2010).

    Article  CAS  Google Scholar 

  23. Sellares, J. et al. Understanding the causes of kidney transplant failure: the dominant role of antibody mediated rejection and nonadherence. Am. J. Transplant. 12, 388–399 (2012).

    Article  CAS  Google Scholar 

  24. Haririan, A. et al. Positive cross-match living donor kidney transplantation: longer-term outcomes. Am. J. Transplant. 9, 536–542 (2009).

    Article  CAS  Google Scholar 

  25. Lefaucheur, C. et al. Preexisting donor-specific HLA antibodies predict outcome in kidney transplantation. J. Am. Soc. Nephrol. 21, 1398–1406 (2010).

    Article  Google Scholar 

  26. Stegall, M. D. et al. The histology of solitary renal allografts at 1 and 5 years after transplantation. Am. J. Transplant. 11, 698–707 (2011).

    Article  CAS  Google Scholar 

  27. Lamb, K. E., Lodhi, S. & Meier-Kriesche, H. U. Long-term renal allograft survival in the United States: a critical reappraisal. Am. J. Transplant. 11, 450–462 (2011).

    Article  CAS  Google Scholar 

  28. Cornell, L. D., Smith, R. N. & Colvin, R. B. Kidney transplantation: mechanisms of rejection and acceptance. Annu. Rev. Pathol. 3, 189–220 (2008).

    Article  CAS  Google Scholar 

  29. Loupy, A., Hill, G. S., Nochy, D. & Legendre, C. Antibody-mediated microcirculation injury is the major cause of late kidney transplant failure. Am. J. Transplant. 10, 952; author reply 953 (2010).

    Article  CAS  Google Scholar 

  30. Cosio, F. G. et al. Predicting subsequent decline in kidney allograft function from early surveillance biopsies. Am. J. Transplant. 5, 2464–2472 (2005).

    Article  Google Scholar 

  31. Gloor, J. M. et al. Baseline donor-specific antibody levels and outcomes in positive crossmatch kidney transplantation. Am. J. Transplant. 10, 582–589 (2010).

    Article  CAS  Google Scholar 

  32. Bentall, A. J. et al. Five-year outcomes in living donor kidney transplants with a positive crossmatch. Am. J. Transplant. (in press).

  33. Haas, M. et al. Subclinical acute antibody-mediated rejection in positive crossmatch renal allografts. Am. J. Transplant. 7, 576–585 (2007).

    Article  CAS  Google Scholar 

  34. Lerut, E., Naesens, M., Kuypers, D. R., Vanrenterghem, Y. & Van Damme, B. Subclinical peritubular capillaritis at 3 months is associated with chronic rejection at 1 year. Transplantation 83, 1416–1422 (2007).

    Article  Google Scholar 

  35. Hidalgo, L. G. et al. Interpreting NK cell transcripts versus T cell transcripts in renal transplant biopsies. Am. J. Transplant. 12, 1180–1191 (2012).

    Article  CAS  Google Scholar 

  36. Zhang, X., Rozengurt, E. & Reed, E. F. HLA class I molecules partner with integrin β4 to stimulate endothelial cell proliferation and migration. Sci. Signal. 3, ra85 (2010).

    CAS  PubMed  Google Scholar 

  37. Li, F., Zhang, X., Jin, Y. P., Mulder, A. & Reed, E. F. Antibody ligation of human leukocyte antigen class I molecules stimulates migration and proliferation of smooth muscle cells in a focal adhesion kinase-dependent manner. Hum. Immunol. 72, 1150–1159 (2011).

    Article  CAS  Google Scholar 

  38. Katsushige, A. et al. Enhanced expression of complement C5a receptor mRNA in human diseased kidney assessed by in situ hybridization. Kidney Int. 60, 137–146 (2001).

    Article  Google Scholar 

  39. Shankland, S. J., Pippin, J. W. & Couser, W. G. Complement (C5b-9) induces glomerular epithelial cell DNA synthesis but not proliferation in vitro. Kidney Int. 56, 538–548 (1999).

    Article  CAS  Google Scholar 

  40. Wavamunno, M. D. et al. Transplant glomerulopathy: ultrastructural abnormalities occur early in longitudinal analysis of protocol biopsies. Am. J. Transplant. 7, 2757–2768 (2007).

    Article  CAS  Google Scholar 

  41. Dean, P. G., Park, W. D., Cornell, L. D., Gloor, J. M. & Stegall, M. D. Intragraft gene expression in positive crossmatch kidney allografts: ongoing inflammation mediates chronic antibody-mediated injury. Am. J. Transplant. 6, 1551–1563 (2012).

    Article  Google Scholar 

  42. Sis, B. et al. Endothelial gene expression in kidney transplants with alloantibody indicates antibody-mediated damage despite lack of C4d staining. Am. J. Transplant. 9, 2312–2323 (2009).

    Article  CAS  Google Scholar 

  43. Sis, B. & Halloran, P. F. Endothelial transcripts uncover a previously unknown phenotype: C4d-negative antibody-mediated rejection. Curr. Opin. Organ Transplant. 15, 42–48 (2010).

    Article  Google Scholar 

  44. Sis, B. et al. A new diagnostic algorithm for antibody-mediated microcirculation inflammation in kidney transplants. Am. J. Transplant. 12, 1168–1179 (2012).

    Article  CAS  Google Scholar 

  45. Everly, M. J. et al. Bortezomib provides effective therapy for antibody- and cell-mediated acute rejection. Transplantation 86, 1754–1761 (2008).

    Article  CAS  Google Scholar 

  46. Locke, J. E. et al. The use of antibody to complement protein C5 for salvage treatment of severe antibody-mediated rejection. Am. J. Transplant. 9, 231–235 (2009).

    Article  CAS  Google Scholar 

  47. Worthington, J. E., Martin, S., Al-Husseini, D. M., Dyer, P. A. & Johnson, R. W. Posttransplantation production of donor HLA-specific antibodies as a predictor of renal transplant outcome. Transplantation 15, 1034–1040 (2003).

    Article  Google Scholar 

  48. Lee, P.-C., Zhu, L., Terasaki, P. I. & Everly, M. J. HLA-specific antibodies developed in the first year posttransplant are predictive of chronic rejection and renal graft loss. Transplantation 88, 568–574 (2009).

    Article  CAS  Google Scholar 

  49. Everly, M. J. et al. Survival after the onset of de novo donor specific anti-HLA antibodies in a consecutive series of “low risk” renal transplant patients [abstract #180, 80]. Am. J. Transplant. 12 (Suppl. 3) 27–542 (2012).

    Google Scholar 

  50. Sacks, S. H. & Zhou, W. The role of complement in the early immune response to transplantation. Nat. Rev. Immunol. 21, 431–442 (2012).

    Article  Google Scholar 

  51. Sutherland, S. M. et al. Complement-fixing donor-specific antibodies identified by a novel C1q assay are associated with allograft loss. Pediatr. Transplant. 16, 12–17 (2012).

    Article  CAS  Google Scholar 

  52. Yabu, J. M. et al. C1q-fixing human leukocyte antigen antibodies are specific for predicting transplant glomerulopathy and late graft failure after kidney transplantation. Transplantation 91, 342–347 (2011).

    Article  CAS  Google Scholar 

  53. Wahrmann, M. et al. Pivotal role of complement-fixing HLA alloantibodies in presensitized kidney allograft recipients. Am. J. Transplant. 6, 1033–1041 (2006).

    Article  CAS  Google Scholar 

  54. Wahrmann, M. et al. Clinical relevance of preformed C4d-fixing and non-C4d-fixing HLA single antigen reactivity in renal allograft recipients. Transpl. Int. 22, 982–989 (2009).

    Article  CAS  Google Scholar 

  55. Marcén, R. et al. Immunoglobulin class and specificity of lymphocytotoxic antibodies after kidney transplantation. Nephrol. Dial. Transplant. 3, 809–813 (1988).

    PubMed  Google Scholar 

  56. Bryan, C. F. et al. IgM antibodies identified by a DTT-ameliorated positive crossmatch do not influence renal graft outcome but the strength of the IgM lymphocytotoxicity is associated with DR phenotype. Clin. Transplant. 15 (Suppl. 6), 28–35 (2001).

    Article  Google Scholar 

  57. Taylor, C. J., Chapman, J. R., Ting, A. & Morris, P. J. Characterization of lymphocytotoxic antibodies causing a positive crossmatch in renal transplantation. Relationship to primary and regraft outcome. Transplantation 48, 953–958 (1989).

    Article  CAS  Google Scholar 

  58. Barger, B. et al. Successful renal allografts in recipients with crossmatch-positive, dithioerythritol-treated negative sera. Race, transplant history, and HLA-DR1 phenotype. Transplantation 47, 240–245 (1989).

    Article  CAS  Google Scholar 

  59. Stastny, P. et al. Role of immunoglobulin (Ig)-G and IgM antibodies against donor human leukocyte antigens in organ transplant recipients. Hum. Immunol. 70, 600–604 (2009).

    Article  CAS  Google Scholar 

  60. Brodsky, S. V. et al. Expression of the decay-accelerating factor (CD55) in renal transplants--a possible prediction marker of allograft survival. Transplantation 88, 457–464 (2009).

    Article  CAS  Google Scholar 

  61. Chen Song, S. et al. Complement inhibition enables renal allograft accommodation and long-term engraftment in presensitized nonhuman primates. Am. J. Transplant. 11, 2057–2066 (2011).

    Article  CAS  Google Scholar 

  62. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  63. Ferraresso, M. et al. Posttransplant ischemia-reperfusion injury in transplanted heart is prevented by a minibody to the fifth component of complement. Transplantation 86, 1445–1451 (2008).

    Article  CAS  Google Scholar 

  64. Jang, J. H. et al. Increased local concentration of complement C5a contributes to incisional pain in mice. J. Neuroinflammation 7, 80 (2011).

    Article  Google Scholar 

  65. Iyer, A. et al. Inhibition of inflammation and fibrosis by a complement C5a receptor antagonist in DOCA-salt hypertensive rats. J. Cardiovasc. Pharmacol. 58, 479–486 (2011).

    Article  CAS  Google Scholar 

  66. Heeger, P. S. & Kemper, C. Novel roles of complement in T effector cell regulation. Immunobiology 217, 216–224 (2012).

    Article  CAS  Google Scholar 

  67. Molina, H. et al. Markedly impaired humoral immune responses in mice deficient in complement receptors 1 and 2. Proc. Natl Acad. Sci. USA 93, 3357–3361 (1996).

    Article  CAS  Google Scholar 

  68. Fang, Y., Xu, C., Fu, Y., Holer, V. M. & Molina, H. Expression of complement receptors 1 and 2 on follicular dendritic cells is necessary for the generation of a strong antigen-specific IgG response. J. Immunol. 160, 5273–5279 (1998).

    CAS  PubMed  Google Scholar 

  69. Carter, R. H., Spycher, M. O., Ng, Y. C., Hoffman, R. & Fearon, D. T. Synergistic interaction between complement receptor type 2 and membrane IgM on B lymphocytes. J. Immunol. 141, 457–467 (1988).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M. D. Stegall, M. F. Chedid and L. D. Cornell contributed equally to researching data for the article, discussions of the content, writing the article and review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Mark D. Stegall.

Ethics declarations

Competing interests

M. D. Stegall and L. D. Cornell have received grant support from Alexion Pharmaceuticals. M. D. Stegall has also received grant support from Millennium Pharmaceuticals. M. F. Chedid declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stegall, M., Chedid, M. & Cornell, L. The role of complement in antibody-mediated rejection in kidney transplantation. Nat Rev Nephrol 8, 670–678 (2012). https://doi.org/10.1038/nrneph.2012.212

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2012.212

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing