Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Snai1 and Snai2 collaborate on tumor growth and metastasis properties of mouse skin carcinoma cell lines

Abstract

Snai1 (Snail) and Snai2 (Slug), the two main members of Snail family factors, are important mediators of epithelial-mesenchymal transitions and involved in tumor progression. We recently reported that Snai1 plays a major role in tumor growth, invasion and metastasis, but the contribution of Snai2 to tumorigenesis is not yet well understood. To approach this question we have silenced Snai2 and/or Snai1 by stable RNA interference in two independent mouse skin carcinoma (HaCa4 and CarB) cell lines. We demonstrate that Snai2 knockdown has a milder effect, but collaborates with Snai1 silencing in reduction of tumor growth potential of either carcinoma cell line when injected into nude mice. Importantly, Snai1 or Snai2 silencing dramatically influences the metastatic ability of squamous carcinoma HaCa4 cells, inducing a strong reduction in liver and lung distant metastasis. However, only Snai1 knockdown has an effective action on invasiveness and fully abolishes tumor cell dissemination into the spleen. These results demonstrate that Snai1 and Snai2 collaborate on primary tumor growth and specifically contribute to site-specific metastasis of HaCa4 cells. These data also indicate that Snai1 is the major regulator of local invasion, supporting a hierarchical participation of both factors in the metastatic process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

d.p.i.:

days post-injection

EMT:

epithelial-mesenchymal transition

MDCK:

Madin Darby canine kidney

MMP:

metalloproteinase

MRI:

magnetic resonance imaging

qRT-PCR:

quantitative real-time PCR

RT–PCR:

reverse transcription–PCR

shRNA:

small hairpin interfering RNA

References

  • Barrallo-Gimeno A, Nieto MA . (2005). The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132: 3151–3161.

    Article  CAS  PubMed  Google Scholar 

  • Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J et al. (2000). The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumor cells. Nat Cell Biol 2: 84–89.

    Article  CAS  PubMed  Google Scholar 

  • Birchmeier W, Behrens J . (1994). Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta 1198: 11–26.

    CAS  PubMed  Google Scholar 

  • Bolos V, Peinado H, Perez-Moreno MA, Fraga MF, Esteller M, Cano A . (2003). The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci 116: 499–511.

    Article  CAS  PubMed  Google Scholar 

  • Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG et al. (2000). The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2: 76–83.

    Article  CAS  PubMed  Google Scholar 

  • Carver EA, Jiang R, Lan Y, Oram KF, Gridley T . (2001). The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition. Mol Cell Biol 21: 8184–8188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christofori G . (2006). New signals from the invasive front. Nature 441: 444–450.

    Article  CAS  PubMed  Google Scholar 

  • Christofori G, Semb H . (1999). The role of the cell-adhesion molecule E-cadherin as a tumor-suppressor gene. Trends Biochem Sci 24: 73–76.

    Article  CAS  PubMed  Google Scholar 

  • Come C, Magnino F, Bibeau F, De Santa Barbara P, Becker KF, Theillet C et al. (2006). Snail and slug play distinct roles during breast carcinoma progression. Clin Cancer Res 12: 5395–5402.

    Article  CAS  PubMed  Google Scholar 

  • Elloul S, Elstrand MB, Nesland JM, Trope CG, Kvalheim G, Goldberg I et al. (2005). Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma. Cancer 103: 1631–1643.

    Article  CAS  PubMed  Google Scholar 

  • Elloul S, Silins I, Trope CG, Benshushan A, Davidson B, Reich R . (2006). Expression of E-cadherin transcriptional regulators in ovarian carcinoma. Virchows Arch 449: 520–528.

    Article  CAS  PubMed  Google Scholar 

  • Fraga MF, Herranz M, Espada J, Ballestar E, Paz MF, Ropero S et al. (2004). A mouse skin multistage carcinogenesis model reflects the aberrant DNA methylation patterns of human tumors. Cancer Res 64: 5227–5234.

    Article  Google Scholar 

  • Guaita S, Puig I, Franci C, Garrido M, Dominguez D, Batlle E et al. (2002). Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. J Biol Chem 277: 39209–39216.

    Article  CAS  PubMed  Google Scholar 

  • Gupta GP, Massague J . (2006). Cancer metastasis: building a framework. Cell 127: 679–695.

    Article  CAS  PubMed  Google Scholar 

  • Hajra KM, Chen DY, Fearon ER . (2002). The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 62: 1613–1618.

    CAS  PubMed  Google Scholar 

  • Inoue A, Seidel MG, Wu W, Kamizono S, Ferrando AA, Bronson RT et al. (2002). Slug, a highly conserved zinc finger transcriptional repressor, protects hematopoietic progenitor cells from radiation-induced apoptosis in vivo. Cancer Cell 2: 279–288.

    Article  PubMed  Google Scholar 

  • Jiang R, Lan Y, Norton CR, Sundberg JP, Gridley T . (1998). The Slug gene is not essential for mesoderm or neural crest development in mice. Dev Biol 198: 277–285.

    Article  CAS  PubMed  Google Scholar 

  • Jorda M, Marazuela E, Vinyals A, Cubillo E, Olmeda D, Valero E et al. (2007). Id-1 is induced in MDCK epithelial cells by activated Erk/MAPK pathway in response to expression of the Snail and E47 transcription factors. Exp Cell Res 313: 2389–2403.

    Article  CAS  PubMed  Google Scholar 

  • Jorda M, Olmeda D, Vinyals A, Valero E, Cubillo E, Llorens A et al. (2005). Upregulation of MMP-9 in MDCK epithelial cell line in response to expression of the Snail transcription factor. J Cell Sci 118: 3371–3385.

    Article  CAS  PubMed  Google Scholar 

  • Kajita M, McClinic KN, Wade PA . (2004). Aberrant expression of the transcription factors snail and slug alters the response to genotoxic stress. Mol Cell Biol 24: 7559–7566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llorens A, Rodrigo I, Lopez-Barcons L, Gonzalez-Garrigues M, Lozano E, Vinyals A et al. (1998). Down-regulation of E-cadherin in mouse skin carcinoma cells enhances a migratory and invasive phenotype linked to matrix metalloproteinase-9 gelatinase expression. Lab Invest 78: 1131–1142.

    CAS  PubMed  Google Scholar 

  • Manzanares M, Locascio A, Nieto MA . (2001). The increasing complexity of the Snail gene superfamily in metazoan evolution. Trends Genet 17: 178–181.

    Article  CAS  PubMed  Google Scholar 

  • Mehlen P, Puisieux A . (2006). Metastasis: a question of life or death. Nat Rev Cancer 6: 449–458.

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Bueno G, Rodríguez-Perales S, Sánchez-Estévez C, Hardisson D, Sarrió D, Prat J et al. (2003). Cyclin D1 gene (CCND1) mutations in endometrial cancer. Oncogene 22: 6115–6118.

    Article  CAS  PubMed  Google Scholar 

  • Navarro P, Gomez M, Pizarro A, Gamallo C, Quintanilla M, Cano A . (1991). A role for the E-cadherin cell-cell adhesion molecule during tumor progression of mouse epidermal carcinogenesis. J Cell Biol 115: 517–533.

    Article  CAS  PubMed  Google Scholar 

  • Nieto MA . (2002). The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 3: 155–166.

    Article  CAS  PubMed  Google Scholar 

  • Olmeda D, Jorda M, Peinado H, Fabra A, Cano A . (2007a). Snail silencing effectively suppresses tumor growth and invasiveness. Oncogene 26: 1862–1874.

    Article  CAS  PubMed  Google Scholar 

  • Olmeda D, Moreno-Bueno G, Flores JM, Fabra A, Portillo F, Cano A . (2007b). SNAI1 is required for tumor growth and lymph node metastasis of human breast carcinoma MDA-MB-231 cells. Cancer Res 67: 11721–11731.

    Article  CAS  PubMed  Google Scholar 

  • Peinado H, Iglesias-de la Cruz MC, Olmeda D, Csiszar K, Fong KS, Vega S et al. (2005). A molecular role for lysyl oxidase-like 2 enzyme in snail regulation and tumor progression. EMBO J 24: 3446–3458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peinado H, Olmeda D, Cano A . (2007). Snail, Zeb and bHLH factors in tumor progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7: 415–428.

    Article  CAS  PubMed  Google Scholar 

  • Perez-Losada J, Sanchez-Martin M, Perez-Caro M, Perez-Mancera PA, Sanchez-Garcia I . (2003). The radioresistance biological function of the SCF/kit signaling pathway is mediated by the zinc-finger transcription factor Slug. Oncogene 22: 4205–4211.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigo I, Cato AA, Cano A . (1999). Regulation of E-cadherin gene expression during tumor progression: the role of a new Ets-binding site and the E-pal element. Exp Cell Res 248: 358–371.

    Article  CAS  PubMed  Google Scholar 

  • Savagner P, Kusewitt DF, Carver EA, Magnino F, Choi C, Gridley T et al. (2005). Developmental transcription factor slug is required for effective re-epithelialization by adult keratinocytes. J Cell Physiol 202: 858–866.

    Article  CAS  PubMed  Google Scholar 

  • Thiery JP . (2002). Epithelial-mesenchymal transitions in tumor progression. Nat Rev Cancer 2: 442–454.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Vanesa Santos for excellent technical assistance, P López for MRI analysis, H Clevers for the pTER-Zeo vector and H Peinado for critical reading of the article. This work was supported by grants from the Spanish Ministry of Education and Science (SAF2004-00361; SAF2007-63051; NAN2004-09230-C04-02; Consolider-Ingenio CSD00C-2007-26102) and the EU (MRTN-CT-2004-005428).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Cano.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olmeda, D., Montes, A., Moreno-Bueno, G. et al. Snai1 and Snai2 collaborate on tumor growth and metastasis properties of mouse skin carcinoma cell lines. Oncogene 27, 4690–4701 (2008). https://doi.org/10.1038/onc.2008.118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.118

Keywords

This article is cited by

Search

Quick links