Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Inflammatory chemokines and metastasis—tracing the accessory

Abstract

The tumor microenvironment consists of stromal cells and leukocytes that contribute to cancer progression. Cross-talk between tumor cells and their microenvironment is facilitated by a variety of soluble factors, including growth factors and cytokines such as chemokines. Due to a wide expression of chemokine receptors on cells in the tumor microenvironment, including tumor cells, chemokines affect various processes such as leukocyte recruitment, angiogenesis, tumor cell survival, tumor cell adhesion, proliferation, vascular permeability, immune suppression, invasion and metastasis. Inflammatory chemokines are instrumental players in cancer-related inflammation and significantly contribute to numerous steps during metastasis. Recruitment of myeloid-derived cells to metastatic sites is mainly mediated by the inflammatory chemokines CCL2 and CCL5. Tumor cell homing and extravasation from the circulation to distant organs are also regulated by inflammatory chemokines. Recent experimental evidence demonstrated that besides leukocyte recruitment, tumor cell-derived CCL2 directly activated endothelial cells and together with monocytes facilitated tumor cell extravasation, in a CCL2- and CCL5-dependent manner. Furthermore, CX3CL1 expression in the bone facilitated metastasis of CX3CR1 expressing tumor cells to this site. Current findings in preclinical models strongly suggest that inflammatory chemokines have an important role during metastasis and targeting of the chemokine axis might have a therapeutic potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  Google Scholar 

  2. Balkwill F . Cancer and the chemokine network. Nat Rev Cancer 2004; 4: 540–550.

    Article  CAS  Google Scholar 

  3. Rollins BJ . Inflammatory chemokines in cancer growth and progression. Eur J Cancer 2006; 42: 760–767.

    CAS  Google Scholar 

  4. Allavena P, Germano G, Marchesi F, Mantovani A . Chemokines in cancer related inflammation. Exp Cell Res 2011; 317: 664–673.

    CAS  Google Scholar 

  5. Fridman WH, Pages F, Sautes-Fridman C, Galon J . The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 2012; 12: 298–306.

    CAS  Google Scholar 

  6. Mishra P, Banerjee D, Ben-Baruch A . Chemokines at the crossroads of tumor-fibroblast interactions that promote malignancy. J Leukoc Biol 2011; 89: 31–39.

    CAS  Google Scholar 

  7. Zhang J, Patel L, Pienta KJ . CC chemokine ligand 2 (CCL2) promotes prostate cancer tumorigenesis and metastasis. Cytokine Growth Factor Rev 2010; 21: 41–48.

    CAS  Google Scholar 

  8. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A . Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 2009; 30: 1073–1081.

    CAS  Google Scholar 

  9. Wolf MJ, Seleznik GM, Zeller N, Heikenwalder M . The unexpected role of lymphotoxin beta receptor signaling in carcinogenesis: from lymphoid tissue formation to liver and prostate cancer development. Oncogene 2010; 29: 5006–5018.

    CAS  Google Scholar 

  10. Ben-Baruch A . The multifaceted roles of chemokines in malignancy. Cancer Metastasis Rev 2006; 25: 357–371.

    CAS  Google Scholar 

  11. Zlotnik A, Burkhardt AM, Homey B . Homeostatic chemokine receptors and organ-specific metastasis. Nat Rev Immunol 2011; 11: 597–606.

    CAS  Google Scholar 

  12. Moser B, Wolf M, Walz A, Loetscher P . Chemokines: multiple levels of leukocyte migration control. Trends Immunol. 2004; 25: 75–84.

    CAS  Google Scholar 

  13. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M . The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004; 25: 677–686.

    CAS  Google Scholar 

  14. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001; 410: 50–56.

    CAS  Google Scholar 

  15. Murakami T, Maki W, Cardones AR, Fang H, Tun Kyi A, Nestle FO et al. Expression of CXC chemokine receptor-4 enhances the pulmonary metastatic potential of murine B16 melanoma cells. Cancer Res 2002; 62: 7328–7334.

    CAS  Google Scholar 

  16. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 2003; 3: 537–549.

    Article  CAS  Google Scholar 

  17. Wendel C, Hemping-Bovenkerk A, Krasnyanska J, Mees ST, Kochetkova M, Stoeppeler S et al. CXCR4/CXCL12 participate in extravasation of metastasizing breast cancer cells within the liver in a rat model. PloS one 2012; 7: e30046.

    CAS  Google Scholar 

  18. Wiley HE, Gonzalez EB, Maki W, Wu MT, Hwang ST . Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma. J Natl Cancer Inst 2001; 93: 1638–1643.

    CAS  Google Scholar 

  19. Krumbholz M, Theil D, Steinmeyer F, Cepok S, Hemmer B, Hofbauer M et al. CCL19 is constitutively expressed in the CNS, up-regulated in neuroinflammation, active and also inactive multiple sclerosis lesions. J Neuroimmunol 2007; 190: 72–79.

    CAS  Google Scholar 

  20. Buonamici S, Trimarchi T, Ruocco MG, Reavie L, Cathelin S, Mar BG et al. CCR7 signalling as an essential regulator of CNS infiltration in T-cell leukaemia. Nature 2009; 459: 1000–1004.

    CAS  Google Scholar 

  21. Richmond A . Nf-kappa B, chemokine gene transcription and tumour growth. Nat Rev Immunol 2002; 2: 664–674.

    CAS  Google Scholar 

  22. Ueno T, Toi M, Saji H, Muta M, Bando H, Kuroi K et al. Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res 2000; 6: 3282–3289.

    CAS  Google Scholar 

  23. Soria G, Yaal-Hahoshen N, Azenshtein E, Shina S, Leider-Trejo L, Rivo L et al. Concomitant expression of the chemokines RANTES and MCP-1 in human breast cancer: A basis for tumor-promoting interactions. Cytokine 2008; 44: 191–200.

    CAS  Google Scholar 

  24. Velasco-Velazquez M, Jiao X, De La Fuente M, Pestell TG, Ertel A, Lisanti MP et al. CCR5 Antagonist Blocks Metastasis of Basal Breast Cancer Cells. Cancer Res 2012; 72: 3839–3850.

    CAS  Google Scholar 

  25. Yoshidome H, Kohno H, Shida T, Kimura F, Shimizu H, Ohtsuka M et al. Significance of monocyte chemoattractant protein-1 in angiogenesis and survival in colorectal liver metastases. Int J Oncol 2009; 34: 923–930.

    CAS  Google Scholar 

  26. Lu Y, Cai Z, Galson DL, Xiao G, Liu Y, George DE et al. Monocyte chemotactic protein-1 (MCP-1) acts as a paracrine and autocrine factor for prostate cancer growth and invasion. Prostate 2006; 66: 1311–1318.

    CAS  Google Scholar 

  27. Zijlmans HJ, Fleuren GJ, Baelde HJ, Eilers PH, Kenter GG, Gorter A . The absence of CCL2 expression in cervical carcinoma is associated with increased survival and loss of heterozygosity at 17q11.2. J Pathol 2006; 208: 507–517.

    CAS  Google Scholar 

  28. Saji H, Koike M, Yamori T, Saji S, Seiki M, Matsushima K et al. Significant correlation of monocyte chemoattractant protein-1 expression with neovascularization and progression of breast carcinoma. Cancer 2001; 92: 1085–1091.

    CAS  Google Scholar 

  29. Yaal-Hahoshen N, Shina S, Leider-Trejo L, Barnea I, Shabtai EL, Azenshtein E et al. The chemokine CCL5 as a potential prognostic factor predicting disease progression in stage II breast cancer patients. Clin Cancer Res 2006; 12: 4474–4480.

    CAS  Google Scholar 

  30. Marchesi F, Piemonti L, Mantovani A, Allavena P . Molecular mechanisms of perineural invasion, a forgotten pathway of dissemination and metastasis. Cytokine Growth Factor Rev 2010; 21: 77–82.

    CAS  Google Scholar 

  31. Marchesi F, Piemonti L, Fedele G, Destro A, Roncalli M, Albarello L et al. The chemokine receptor CX3CR1 is involved in the neural tropism and malignant behavior of pancreatic ductal adenocarcinoma. Cancer Res 2008; 68: 9060–9069.

    CAS  Google Scholar 

  32. Shulby SA, Dolloff NG, Stearns ME, Meucci O, Fatatis A . CX3CR1-fractalkine expression regulates cellular mechanisms involved in adhesion, migration, and survival of human prostate cancer cells. Cancer Res 2004; 64: 4693–4698.

    CAS  Google Scholar 

  33. Andre F, Cabioglu N, Assi H, Sabourin JC, Delaloge S, Sahin A et al. Expression of chemokine receptors predicts the site of metastatic relapse in patients with axillary node positive primary breast cancer. Ann Oncol 2006; 17: 945–951.

    CAS  Google Scholar 

  34. Nurnberg W, Tobias D, Otto F, Henz BM, Schadendorf D . Expression of interleukin-8 detected by in situ hybridization correlates with worse prognosis in primary cutaneous melanoma. J Pathol 1999; 189: 546–551.

    CAS  Google Scholar 

  35. Scheibenbogen C, Mohler T, Haefele J, Hunstein W, Keilholz U . Serum interleukin-8 (IL-8) is elevated in patients with metastatic melanoma and correlates with tumour load. Melanoma Res 1995; 5: 179–181.

    CAS  Google Scholar 

  36. de Vasconcellos JF, Laranjeira AB, Zanchin NI, Otubo R, Vaz TH, Cardoso AA et al. Increased CCL2 and IL-8 in the bone marrow microenvironment in acute lymphoblastic leukemia. Pediatr Blood Cancer 2011; 56: 568–577.

    Google Scholar 

  37. Eisenkraft A, Keidan I, Bielorai B, Keller N, Toren A, Paret G . MCP-1 in the cerebrospinal fluid of children with acute lymphoblastic leukemia. Leuk Res 2006; 30: 1259–1261.

    CAS  Google Scholar 

  38. Mantovani A, Sica A . Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol. 2010; 22: 231–237.

    CAS  Google Scholar 

  39. Stormes KA, Lemken CA, Lepre JV, Marinucci MN, Kurt RA . Inhibition of metastasis by inhibition of tumor-derived CCL5. Breast Cancer Res Treat 2005; 89: 209–212.

    CAS  Google Scholar 

  40. Chiu HY, Sun KH, Chen SY, Wang HH, Lee MY, Tsou YC et al. Autocrine CCL2 promotes cell migration and invasion via PKC activation and tyrosine phosphorylation of paxillin in bladder cancer cells. Cytokine 2012; 59: 423–432.

    CAS  Google Scholar 

  41. Lu Y, Chen Q, Corey E, Xie W, Fan J, Mizokami A et al. Activation of MCP-1/CCR2 axis promotes prostate cancer growth in bone. Clin Exp Metastasis 2009; 26: 161–169.

    Google Scholar 

  42. Roca H, Varsos Z, Pienta KJ . CCL2 protects prostate cancer PC3 cells from autophagic death via phosphatidylinositol 3-kinase/AKT-dependent survivin up-regulation. J Biol Chem 2008; 283: 25057–25073.

    CAS  Google Scholar 

  43. Fang WB, Jokar I, Zou A, Lambert D, Dendukuri P, Cheng N . CCL2/CCR2 chemokine signaling coordinates survival and motility of breast cancer cells through Smad3 protein- and p42/44 mitogen-activated protein kinase (MAPK)-dependent mechanisms. J Biol Chem 2012; 287: 36593–36608.

    CAS  Google Scholar 

  44. Varney ML, Johansson SL, Singh RK . Distinct expression of CXCL8 and its receptors CXCR1 and CXCR2 and their association with vessel density and aggressiveness in malignant melanoma. Am J Clin Pathol 2006; 125: 209–216.

    CAS  Google Scholar 

  45. Wu S, Singh S, Varney ML, Kindle S, Singh RK . Modulation of CXCL-8 expression in human melanoma cells regulates tumor growth, angiogenesis, invasion, and metastasis. Cancer Med 2012; 1: 306–317.

    CAS  Google Scholar 

  46. Merritt WM, Lin YG, Spannuth WA, Fletcher MS, Kamat AA, Han LY et al. Effect of interleukin-8 gene silencing with liposome-encapsulated small interfering RNA on ovarian cancer cell growth. J Natl Cancer Inst 2008; 100: 359–372.

    CAS  Google Scholar 

  47. Keeley EC, Mehrad B, Strieter RM . Chemokines as mediators of tumor angiogenesis and neovascularization. Exp Cell Res 2011; 317: 685–690.

    CAS  Google Scholar 

  48. Addison CL, Daniel TO, Burdick MD, Liu H, Ehlert JE, Xue YY et al. The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR+ CXC chemokine-induced angiogenic activity. J Immunol 2000; 165: 5269–5277.

    CAS  Google Scholar 

  49. Pan J, Burdick MD, Belperio JA, Xue YY, Gerard C, Sharma S et al. CXCR3/CXCR3 ligand biological axis impairs RENCA tumor growth by a mechanism of immunoangiostasis. J Immunol 2006; 176: 1456–1464.

    CAS  Google Scholar 

  50. Salcedo R, Ponce ML, Young HA, Wasserman K, Ward JM, Kleinman HK et al. Human endothelial cells express CCR2 and respond to MCP-1: direct role of MCP-1 in angiogenesis and tumor progression. Blood 2000; 96: 34–40.

    CAS  Google Scholar 

  51. Weber KS, Nelson PJ, Grone HJ, Weber C . Expression of CCR2 by endothelial cells: implications for MCP-1 mediated wound injury repair and in vivo inflammatory activation of endothelium. Arterioscler Thromb Vasc Biol 1999; 19: 2085–2093.

    CAS  Google Scholar 

  52. Feil C, Augustin HG . Endothelial cells differentially express functional CXC-chemokine receptor-4 (CXCR-4/fusin) under the control of autocrine activity and exogenous cytokines. Biochem Biophys Res Commun 1998; 247: 38–45.

    CAS  Google Scholar 

  53. Li X, Loberg R, Liao J, Ying C, Snyder LA, Pienta KJ et al. A destructive cascade mediated by CCL2 facilitates prostate cancer growth in bone. Cancer Res 2009; 69: 1685–1692.

    CAS  Google Scholar 

  54. Low-Marchelli JM, Ardi VC, Vizcarra EA, van Rooijen N, Quigley JP, Yang J . Twist1 induces CCL2 and recruits macrophages to promote angiogenesis. Cancer Res 2013; 73: 662–671.

    CAS  Google Scholar 

  55. Reed JR, Stone MD, Beadnell TC, Ryu Y, Griffin TJ, Schwertfeger KL . Fibroblast growth factor receptor 1 activation in mammary tumor cells promotes macrophage recruitment in a CX3CL1-dependent manner. PloS one 2012; 7: e45877.

    CAS  Google Scholar 

  56. Lesokhin AM, Hohl TM, Kitano S, Cortez C, Hirschhorn-Cymerman D, Avogadri F et al. Monocytic CCR2(+) myeloid-derived suppressor cells promote immune escape by limiting activated CD8 T-cell infiltration into the tumor microenvironment. Cancer Res 2012; 72: 876–886.

    CAS  Google Scholar 

  57. Fridlender ZG, Kapoor V, Buchlis G, Cheng G, Sun J, Wang LC et al. Monocyte chemoattractant protein-1 blockade inhibits lung cancer tumor growth by altering macrophage phenotype and activating CD8+ cells. Am J Respir Cell Mol Biol 2011; 44: 230–237.

    CAS  Google Scholar 

  58. Takahashi M, Miyazaki H, Furihata M, Sakai H, Konakahara T, Watanabe M et al. Chemokine CCL2/MCP-1 negatively regulates metastasis in a highly bone marrow-metastatic mouse breast cancer model. Clin Exp Metastasis 2009; 26: 817–828.

    CAS  Google Scholar 

  59. Granot Z, Henke E, Comen EA, King TA, Norton L, Benezra R . Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell 2011; 20: 300–314.

    CAS  Google Scholar 

  60. Nakasone Y, Fujimoto M, Matsushita T, Hamaguchi Y, Huu DL, Yanaba M et al. Host-derived MCP-1 and MIP-1alpha regulate protective anti-tumor immunity to localized and metastatic B16 melanoma. Am J Pathol 2012; 180: 365–374.

    CAS  Google Scholar 

  61. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: "N1" versus "N2" TAN. Cancer Cell 2009; 16: 183–194.

    CAS  Google Scholar 

  62. Kowanetz M, Wu X, Lee J, Tan M, Hagenbeek T, Qu X et al. Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G+Ly6C+ granulocytes. Proc Natl Acad Sci USA 2010; 107: 21248–21255.

    CAS  Google Scholar 

  63. Said N, Sanchez-Carbayo M, Smith SC, Theodorescu D . RhoGDI2 suppresses lung metastasis in mice by reducing tumor versican expression and macrophage infiltration. J Clin Invest 2012; 122: 1503–1518.

    CAS  Google Scholar 

  64. Lu X, Kang Y . Chemokine (C-C motif) ligand 2 engages CCR2+ stromal cells of monocytic origin to promote breast cancer metastasis to lung and bone. J Biol Chem 2009; 284: 29087–29096.

    CAS  Google Scholar 

  65. Robinson SC, Scott KA, Wilson JL, Thompson RG, Proudfoot AE, Balkwill FR . A chemokine receptor antagonist inhibits experimental breast tumor growth. Cancer Res 2003; 63: 8360–8365.

    CAS  Google Scholar 

  66. Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 2011; 475: 222–225.

    CAS  Google Scholar 

  67. Wolf MJ, Hoos A, Bauer J, Boettcher S, Knust M, Weber A et al. Endothelial CCR2 signaling induced by colon carcinoma cells enables extravasation via the JAK2-Stat5 and p38MAPK pathway. Cancer Cell 2012; 22: 91–105.

    CAS  Google Scholar 

  68. Zhao L, Lim SY, Gordon-Weeks AN, Tapmeier TT, Im JH, Cao Y et al. Recruitment of a myeloid cell subset (CD11b/Gr1(mid) )via CCL2/CCR2 promotes the development of colorectal cancer liver metastasis. Hepatology 2013; 57: 829–839.

    CAS  Google Scholar 

  69. Azenshtein E, Luboshits G, Shina S, Neumark E, Shahbazian D, Weil M et al. The CC chemokine RANTES in breast carcinoma progression: regulation of expression and potential mechanisms of promalignant activity. Cancer Res 2002; 62: 1093–1102.

    CAS  Google Scholar 

  70. Tremblay PL, Auger FA, Huot J . Regulation of transendothelial migration of colon cancer cells by E-selectin-mediated activation of p38 and ERK MAP kinases. Oncogene 2006; 25: 6563–6573.

    CAS  Google Scholar 

  71. Mao Y, Li Z, Lou C, Zhang Y . Expression of phosphorylated Stat5 predicts expression of cyclin D1 and correlates with poor prognosis of colonic adenocarcinoma. Int J Colorectal Dis 2011; 26: 29–35.

    Google Scholar 

  72. Gu L, Vogiatzi P, Puhr M, Dagvadorj A, Lutz J, Ryder A et al. Stat5 promotes metastatic behavior of human prostate cancer cells in vitro and in vivo. Endocr Relat Cancer 2010; 17: 481–493.

    CAS  Google Scholar 

  73. Hembruff SL, Jokar I, Yang L, Cheng N . Loss of transforming growth factor-beta signaling in mammary fibroblasts enhances CCL2 secretion to promote mammary tumor progression through macrophage-dependent and -independent mechanisms. Neoplasia 2010; 12: 425–433.

    CAS  Google Scholar 

  74. Tsuyada A, Chow A, Wu J, Somlo G, Chu P, Loera S et al. CCL2 mediates cross-talk between cancer cells and stromal fibroblasts that regulates breast cancer stem cells. Cancer Res 2012; 72: 2768–2779.

    CAS  Google Scholar 

  75. Läubli H, Spanaus KS, Borsig L . Selectin-mediated activation of endothelial cells induces expression of CCL5 and promotes metastasis through recruitment of monocytes. Blood 2009; 114: 4583–4591.

    Google Scholar 

  76. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007; 449: 557–563.

    CAS  Google Scholar 

  77. Peinado H, Lavotshkin S, Lyden D . The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin Cancer Biol 2011; 21: 139–146.

    CAS  Google Scholar 

  78. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005; 438: 820–827.

    CAS  Google Scholar 

  79. Lukanidin E, Sleeman JP . Building the niche: the role of the S100 proteins in metastatic growth. Semin Cancer Biol 2012; 22: 216–225.

    CAS  Google Scholar 

  80. Hiratsuka S, Watanabe A, Aburatani H, Maru Y . Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 2006; 8: 1369–1375.

    CAS  Google Scholar 

  81. Forst B, Hansen MT, Klingelhofer J, Moller HD, Nielsen GH, Grum-Schwensen B et al. Metastasis-inducing S100A4 and RANTES cooperate in promoting tumor progression in mice. PLoS One 2010; 5: e10374.

    Google Scholar 

  82. Yang C, Robbins PD . The roles of tumor-derived exosomes in cancer pathogenesis. Clin Dev Immunol 2011; 2011: 842–849.

    Google Scholar 

  83. Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 2012; 18: 883–891.

    CAS  Google Scholar 

  84. Liu Y, Xiang X, Zhuang X, Zhang S, Liu C, Cheng Z et al. Contribution of MyD88 to the tumor exosome-mediated induction of myeloid derived suppressor cells. Am J Pathol 2010; 176: 2490–2499.

    CAS  Google Scholar 

  85. Janowska-Wieczorek A, Wysoczynski M, Kijowski J, Marquez-Curtis L, Machalinski B, Ratajczak J et al. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer 2005; 113: 752–760.

    CAS  Google Scholar 

  86. Loberg RD, Day LL, Harwood J, Ying C St, John LN, Giles R et al. CCL2 is a potent regulator of prostate cancer cell migration and proliferation. Neoplasia 2006; 8: 578–586.

    CAS  Google Scholar 

  87. Mizutani K, Sud S, McGregor NA, Martinovski G, Rice BT, Craig MJ et al. The chemokine CCL2 increases prostate tumor growth and bone metastasis through macrophage and osteoclast recruitment. Neoplasia 2009; 11: 1235–1242.

    CAS  Google Scholar 

  88. Molloy AP, Martin FT, Dwyer RM, Griffin TP, Murphy M, Barry FP et al. Mesenchymal stem cell secretion of chemokines during differentiation into osteoblasts, and their potential role in mediating interactions with breast cancer cells. Int J Cancer 2009; 124: 326–332.

    CAS  Google Scholar 

  89. Park SI, Liao J, Berry JE, Li X, Koh AJ, Michalski ME et al. Cyclophosphamide creates a receptive microenvironment for prostate cancer skeletal metastasis. Cancer Res 2012; 72: 2522–2532.

    CAS  Google Scholar 

  90. Jamieson-Gladney WL, Zhang Y, Fong AM, Meucci O, Fatatis A . The chemokine receptor CX(3)CR1 is directly involved in the arrest of breast cancer cells to the skeleton. Breast Cancer Res 2011; 13: R91.

    Google Scholar 

  91. Garin A, Proudfoot AE . Chemokines as targets for therapy. Exp Cell Res 2011; 317: 602–612.

    CAS  Google Scholar 

Download references

Acknowledgements

LB was supported by Swiss National Foundation (31003A-133025) and by EuroNanoMed2 2nd call; project NANODIATER. MH was supported by the Helmholtz foundation, a Starting ERC grant, the SFB transregio 36, the Helmholtz alliance PCCC and the Hofschneider foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Borsig.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borsig, L., Wolf, M., Roblek, M. et al. Inflammatory chemokines and metastasis—tracing the accessory. Oncogene 33, 3217–3224 (2014). https://doi.org/10.1038/onc.2013.272

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.272

Keywords

This article is cited by

Search

Quick links