Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

CDK/CK1 inhibitors roscovitine and CR8 downregulate amplified MYCN in neuroblastoma cells

Abstract

To understand the mechanisms of action of (R)-roscovitine and (S)-CR8, two related pharmacological inhibitors of cyclin-dependent kinases (CDKs), we applied a variety of ‘-omics’ techniques to the human neuroblastoma SH-SY5Y and IMR32 cell lines: (1) kinase interaction assays, (2) affinity competition on immobilized broad-spectrum kinase inhibitors, (3) affinity chromatography on immobilized (R)-roscovitine and (S)-CR8, (4) whole genome transcriptomics analysis and specific quantitative PCR studies, (5) global quantitative proteomics approach and western blot analysis of selected proteins. Altogether, the results show that the major direct targets of these two molecules belong to the CDKs (1,2,5,7,9,12), DYRKs, CLKs and CK1s families. By inhibiting CDK7, CDK9 and CDK12, these inhibitors transiently reduce RNA polymerase 2 activity, which results in downregulation of a large set of genes. Global transcriptomics and proteomics analysis converge to a central role of MYC transcription factors downregulation. Indeed, CDK inhibitors trigger rapid and massive downregulation of MYCN expression in MYCN-amplified neuroblastoma cells as well as in nude mice xenografted IMR32 cells. Inhibition of casein kinase 1 may also contribute to the antitumoral activity of (R)-roscovitine and (S)-CR8. This dual mechanism of action may be crucial in the use of these kinase inhibitors for the treatment of MYC-dependent cancers, in particular neuroblastoma where MYCN amplification is a strong predictor factor for high-risk disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin

CDC2:

cell division cycle 2

CDK:

cyclin-dependent kinase

CHX:

cycloheximide

CK1:

casein kinase 1

CLK:

cdc2-like kinase

CRKRS:

cdc2-related protein kinase 7 (CDK12)

DMEM:

Dulbecco/Vogt modified Eagle's minimal essential medium

DMSO:

dimethylsulfoxide

DTT:

dithiothreitol

DYRK:

dual specificity, tyrosine phosphorylation regulated kinase

FADK:

focal adhesion kinase

FCS:

fetal calf serum

GAPDH:

glyceraldehyde 3-phosphate dehydrogenase

GSK-3:

glycogen synthase kinase-3

PBS:

phosphate-buffered saline

PDXK:

pyridoxal kinase

RT:

room temperature.

References

  1. Weinmann H, Metternich R . Drug discovery process for kinase inhibitors. ChemBioChem 2005; 6: 455–459.

    PubMed  Google Scholar 

  2. Eglen RM, Reisine T . The current status of drug discovery against the human kinome. Assay. Drug Dev Technol 2009; 7: 22–43.

    CAS  Google Scholar 

  3. Eglen R, Reisine T . Drug discovery and the human kinome: recent trends. Pharmacol Ther 2011; 130: 144–156.

    CAS  PubMed  Google Scholar 

  4. Via MC . Kinase-targeted therapeutics: development pipelines, challenges, and opportunities. Cambridge Healthtech Institute, Needham, MA, USA, 2011, pp 124.

    Google Scholar 

  5. Petrelli A, Giordano S . From single- to multi-target drugs in cancer therapy: when aspecificity becomes an advantage. Curr Med Chem 2008; 15: 422–432.

    CAS  PubMed  Google Scholar 

  6. Fabian MA, Biggs WH, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG et al. A small molecule-kinase interaction map for clinical kinase inhibitors. Nat Biotechnol 2005; 23: 329–336.

    CAS  PubMed  Google Scholar 

  7. Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT et al. A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 2008; 26: 127–132.

    CAS  PubMed  Google Scholar 

  8. Goldstein DM, Gray NS, Zarrinkar PP . High-throughput kinase profiling as a platform for drug discovery. Nat Rev Drug Discov 2008; 7: 391–397.

    CAS  PubMed  Google Scholar 

  9. Bain J, McLauchlan H, Elliott M, Cohen P . The specificities of protein kinase inhibitors: an update. Biochem J 2003; 371: 199–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bain J, Plater L, Elliott M, Shpiro N, Hastie CJ, McLauchlan H et al. The selectivity of protein kinase inhibitors: a further update. Biochem J 2007; 408: 297–315.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Malumbres M, Harlow E, Hunt T, Hunter T, Lahti JM, Manning G et al. Cyclin-dependent kinases: a family portrait. Nat Cell Biol 2009; 11: 1275–1276.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Knockaert M, Greengard P, Meijer L . Pharmacological inhibitors of cyclin-dependent kinases. Trends Pharmacol Sci 2002; 23: 417–425.

    CAS  PubMed  Google Scholar 

  13. Malumbres M, Pevarello P, Barbacid M, Bischoff JR . CDK inhibitors in cancer therapy: what is next? Trends Pharmacol Sci 2008; 29: 16–21.

    CAS  PubMed  Google Scholar 

  14. Galons H, Oumata N, Gloulou O, Meijer L . Cyclin-dependent kinase inhibitors closer to market launch? Expert Opin Ther Pat. 2013; 23: 945–963.

    CAS  PubMed  Google Scholar 

  15. Johnson N, Shapiro GI . Cyclin-dependent kinases (cdks) and the DNA damage response: rationale for cdk inhibitor-chemotherapy combinations as an anticancer strategy for solid tumors. Expert. Opin Ther Targets 2010; 14: 1199–1212.

    CAS  Google Scholar 

  16. Cirillo D, Pentimalli F, Giordano A . Peptides or small molecules? Different approaches to develop more effective CDK inhibitors. Curr Med Chem 2011; 18: 2854–2866.

    CAS  PubMed  Google Scholar 

  17. Węsierska-Gądek J, Kramer MP . The impact of multi-targeted cyclin-dependent kinase inhibition in breast cancer cells: clinical implications. Expert Opin Investig Drugs 2011; 20: 1611–1628.

    PubMed  Google Scholar 

  18. Cicenas J, Valius M . The CDK inhibitors in cancer research and therapy. J Cancer Res Clin Oncol 2011; 137: 1409–1418.

    CAS  PubMed  Google Scholar 

  19. Meijer L, Raymond E . Roscovitine and other purines as kinase inhibitors. From starfish oocytes to clinical trials. Acc Chem Res 2003; 36: 417–425.

    CAS  PubMed  Google Scholar 

  20. Bettayeb K, Oumata N, Echalier A, Ferandin Y, Endicott JA, Galons H, Meijer L . CR8, a potent and selective, roscovitine-derived inhibitor of cyclin-dependent kinases. Oncogene 2008; 27: 5797–5807.

    CAS  PubMed  Google Scholar 

  21. Oumata N, Ferandin Y, Meijer L, Galons H . Practical synthesis of roscovitine and CR8. Organic Process Res Dev 2009; 13: 641–644.

    CAS  Google Scholar 

  22. Bettayeb K, Baunbæk D, Delehouzé C, Loaëc N, Hole A, Baumli S et al. CDK inhibitors roscovitine and CR8 trigger Mcl-1 down-regulation and apoptotic cell death in neuroblastoma cell lines. Genes & Cancer 2010; 1: 369–380.

    CAS  Google Scholar 

  23. Bettayeb K, Sallam HH, Ferandin Y, Popowycz F, Fournet G, Hassan M et al. N-&-N, a new class of cell death-inducing, kinase inhibitors derived from the purine roscovitine. Mol Cancer Ther 2008; 7: 2713–2724.

    CAS  PubMed  Google Scholar 

  24. Popowycz F, Fournet G, Schneider C, Bettayeb K, Ferandin Y, Lamigeon C et al. Pyrazolo[1,5-a]-1,3,5-triazine as a purine bioisostere: access to potent CDK inhibitor (R)-roscovitine analogue. J Med Chem 2009; 52: 655–663.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Oumata N, Bettayeb K, Ferandin Y, Demange L, Lopez-Giral A, Goddard M-L et al. Roscovitine-derived, dual-specificity inhibitors of cyclin-dependent kinases (CDKs) and casein kinase 1 (CK1). J Med Chem 2008; 51: 5229–5242.

    CAS  PubMed  Google Scholar 

  26. Trova MP, Barnes KD, Barford C, Benanti T, Bielaska M, Burry L et al. Biaryl purine derivatives as potent antiproliferative agents: inhibitors of cyclin dependent kinases. Part I. Bioorg Med Chem Lett 2009; 19: 6608–6612.

    CAS  PubMed  Google Scholar 

  27. Trova MP, Barnes KD, Alicea L, Benanti T, Bielaska M, Bilotta J et al. Heterobiaryl purine derivatives as potent antiproliferative agents: inhibitors of cyclin dependent kinases. Part II. Bioorg Med Chem Lett 2009; 19: 6613–6617.

    CAS  PubMed  Google Scholar 

  28. Jorda R, Paruch K, Krystof V . Cyclin-dependent kinase inhibitors inspired by roscovitine: purine bioisosteres. Curr Pharm Des 2012; 18: 2974–2980.

    CAS  PubMed  Google Scholar 

  29. Meijer L, Borgne A, Mulner O, Chong JPJ, Blow JJ, Inagaki N et al. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem 1997; 243: 527–536.

    CAS  PubMed  Google Scholar 

  30. Aldoss IT, Tashi T, Ganti AK . Seliciclib in malignancies. Expert Opin Investig Drugs 2009; 18: 1957–1965.

    CAS  PubMed  Google Scholar 

  31. Benson C, White J, De Bono J, O'Donnell A, Raynaud F, Cruickshank C et al. A phase I trial of the selective oral cyclin-dependent kinase inhibitor seliciclib (CYC202; R-Roscovitine), administered twice daily for 7 days every 21 days. Br J Cancer 2007; 96: 29–37.

    CAS  PubMed  Google Scholar 

  32. Hsieh WS, Soo R, Peh BK, Loh T, Dong D, Soh D et al. Pharmacodynamic effects of seliciclib an orally administered cell cycle modulator in undifferentiated nasopharyngeal cancer. Clin Cancer Res 2009; 15: 1435–1442.

    CAS  PubMed  Google Scholar 

  33. Hui AB, Yue S, Shi W, Alajez NM, Ito E, Green SR et al. Therapeutic efficacy of seliciclib in combination with ionizing radiation for human nasopharyngeal carcinoma. Clin Cancer Res 2009; 15: 3716–3724.

    CAS  PubMed  Google Scholar 

  34. Bach S, Knockaert M, Reinhardt J, Lozach O, Schmitt S, Baratte B et al. Roscovitine targets, protein kinases and pyridoxal kinase. J Biol Chem 2005; 280: 31208–31219.

    CAS  PubMed  Google Scholar 

  35. Tang L, Li MH, Cao P, Wang F, Chang WR, Bach S et al. Crystal structure of pyridoxal kinase in complex with roscovitine and derivatives. J Biol Chem 2005; 280: 31220–31229.

    CAS  PubMed  Google Scholar 

  36. Sjostrom SK, Finn G, Hahn WC, Rowitch DH, Kenney AM . The Cdk1 complex plays a prime role in regulating N-myc phosphorylation and turnover in neural precursors. Dev Cell 2005; 9: 327–338.

    CAS  PubMed  Google Scholar 

  37. Goga A, Yang D, Tward AD, Morgan DO, Bishop JM . Inhibition of CDK1 as a potential therapy for tumors over-expressing MYC. Nat Med 2007; 13: 820–827.

    CAS  PubMed  Google Scholar 

  38. Hydbring P, Bahram F, Su Y, Tronnersjö S, Högstrand K, von der Lehr N et al. Phosphorylation by Cdk2 is required for Myc to repress Ras-induced senescence in cotransformation. Proc Natl Acad Sci USA 2009; 107: 58–63.

    PubMed  PubMed Central  Google Scholar 

  39. Molenaar JJ, Ebus ME, Geerts D, Koster J, Lamers F, Valentijn LJ et al. Inactivation of CDK2 is synthetically lethal to MYCN over-expressing cancer cells. Proc Natl Acad Sci USA 2009; 106: 12968–12973.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Otto T, Horn S, Brockmann M, Eilers U, Schüttrumpf L, Popov N et al. Stabilization of N-Myc is a critical function of Aurora A in human neuroblastoma. Cancer Cell 2009; 15: 67–78.

    CAS  PubMed  Google Scholar 

  41. Campaner S, Doni M, Hydbring P, Verrecchia A, Bianchi L, Sardella D et al. Cdk2 suppresses cellular senescence induced by the c-myc oncogene. Nat Cell Biol 2010; 12: 54–59.

    CAS  PubMed  Google Scholar 

  42. Wang X, Cunningham M, Zhang X, Tokarz S, Laraway B, Troxell M et al. Phosphorylation regulates c-Myc's oncogenic activity in the mammary gland. Cancer Res 2011; 71: 925–936.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Horiuchi D, Kusdra L, Huskey NE, Chandriani S, Lenburg ME, Gonzalez-Angulo AM et al. MYC pathway activation in triple-negative breast cancer is synthetic lethal with CDK inhibition. J Exp Med 2012; 209: 679–696.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen Y, Tsai YH, Tseng SH . Inhibition of cyclin-dependent kinase 1-induced cell death in neuroblastoma cells through the microRNA-34a-MYCN-survivin pathway. Surgery 2013; 153: 4–16.

    PubMed  Google Scholar 

  45. Cepeda D, Ng HF, Sharifi HR, Mahmoudi S, Cerrato VS, Fredlund E et al. CDK-mediated activation of the SCFFBXO28 ubiquitin ligase promotes MYC-driven transcription and tumourigenesis and predicts poor survival in breast cancer. EMBO Mol Med 2013; 5: 999–1018.

    CAS  PubMed Central  Google Scholar 

  46. Grotzer MA, Castelletti D, Fiaschetti G, Shalaby T, Arcaro A . Targeting Myc in pediatric malignancies of the central and peripheral nervous system. Curr Cancer Drug Targets 2009; 9: 176–188.

    CAS  PubMed  Google Scholar 

  47. Gustafson WC, Weiss WA . Myc proteins as therapeutic targets. Oncogene 2010; 29: 1249–1255.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Albihn A, Johnsen JI, Henriksson MA . MYC in oncogenesis and as a target for cancer therapies. Adv Cancer Res 2010; 107: 163–224.

    CAS  PubMed  Google Scholar 

  49. Toyoshima M, Howie HL, Imakura M, Walsh RM, Annis JE, Chang AN et al. Functional genomics identifies therapeutic targets for MYC-driven cancer. Proc Natl Acad Sci USA 2012; 109: 9545–9950.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Meijer L, Bettayeb K, Galons H . Roscovitine (CYC202, Seliciclib) In: Smith P.J, Yue E (eds) Monographs on Enzyme Inhibitors. CDK Inhibitors and their Potential as Anti-tumor Agents Vol 2, chapter 9. CRC Press, Taylor & Francis, Boca Raton, Fl,, 2006, pp 187–226.

    Google Scholar 

  51. Becker F, Murthi K, Smith C, Come J, Costa-Roldan N, Kaufmann C et al. A three-hybrid approach to scanning the proteome for targets of small molecule kinase inhibitors. Chem Biol 2004; 11: 211–223.

    CAS  PubMed  Google Scholar 

  52. Knockaert M, Gray N, Damiens E, Chang YT, Grellier P, Grant K et al. Intracellular targets of cyclin-dependent kinase inhibitors: identification by affinity chromatography using immobilised inhibitors. Chem & Biol 2000; 7: 411–422.

    CAS  Google Scholar 

  53. Knockaert M, Viking K, Schmitt S, Leost M, Mottram J, Kunick C et al. Intracellular targets of paullones: identification by affinity chromatography using immobilized inhibitor. J Biol Chem 2002; 277: 25493–25501.

    CAS  PubMed  Google Scholar 

  54. Azevedo WF, Leclerc S, Meijer L, Havlicek L, Strnad M, Kim SH . Inhibition of cyclin-dependent kinases by purine analogues: crystal structure of human cdk2 complexed with roscovitine. Eur J Biochem 1997; 243: 518–526.

    PubMed  Google Scholar 

  55. Cheng Y-C, Prusoff WH . Relationship between the inhibition constant (&) and the concentration of inhibitor which causes 50 percent inhibition (Iso) of an enzymatic reaction. Biochem Pharmacol 1973; 22: 3099–3108.

    CAS  PubMed  Google Scholar 

  56. Lovén J, Orlando DA, Sigova AA, Lin CY, Rahl PB, Burge CB, Levens DL, Lee TI, Young RA . Revisiting global gene expression analysis. Cell 2012; 151: 476–482.

    PubMed  PubMed Central  Google Scholar 

  57. Gray N, Wodicka L, Thunnissen AM, Norman T, Kwon S, Espinoza FH et al. Exploiting chemical libraries, structure, and genomics in the search for new kinase inhibitors. Science 1998; 281: 533–538.

    CAS  PubMed  Google Scholar 

  58. Parry D, Guzi T, Shanahan F, Davis N, Prabhavalkar D, Wiswell D, Seghezzi W et al. Dinaciclib (SCH 727965), a novel and potent cyclin-dependent kinase inhibitor. Mol Cancer Ther 2010; 9: 2344–2353.

    CAS  PubMed  Google Scholar 

  59. Squires MS, Cooke L, Lock V, Qi W, Lewis EJ, Thompson NT et al. AT7519, a cyclin-dependent kinase inhibitor, exerts its effects by transcriptional inhibition in leukemia cell lines and patient samples. Mol Cancer Ther 2010; 9: 920–928.

    CAS  PubMed  Google Scholar 

  60. Misra RN, Xiao HY, Kim KS, Lu S, Han WC, Barbosa SA et al. N-(cycloalkylamino)acyl-2-aminothiazole inhibitors of cyclin-dependent kinase 2. N-[5-[[[5-(1,1-dimethylethyl)-2-oxazolyl]methyl]thio]-2-thiazolyl]-4-piperidinecarboxamide (BMS-387032), a highly efficacious and selective antitumor agent. J Med Chem 2004; 47: 1719–1728.

    CAS  PubMed  Google Scholar 

  61. Wang LM, Ren DM . Flavopiridol, the first cyclin-dependent kinase inhibitor: recent advances in combination chemotherapy. Mini Rev Med Chem 2010; 10: 1058–1070.

    CAS  PubMed  Google Scholar 

  62. Debdab M, Carreaux F, Renault S, Soundararajan M, Fedorov O, Filippakopoulos P et al. Leucettines, a class of potent inhibitors of cdc2-like kinases and dual specificity, tyrosine phosphorylation regulated kinases derived from the marine sponge leucettamine B. Modulation of alternative pre-RNA splicing. J Med Chem 2011; 54: 4172–4186.

    CAS  PubMed  Google Scholar 

  63. Tahtouh T, Elkins JM, Filippakopoulos P, Soundararajan M, Burgy G, Durieu E et al. Selectivity, cocrystal structures and neuroprotective properties of leucettines, a family of protein kinase inhibitors derived from the marine sponge alkaloid leucettamine B. J Med Chem 2012; 55: 9312–9330.

    CAS  PubMed  Google Scholar 

  64. Muraki M, Ohkawara B, Hosoya T, Onogi H, Koizumi J, Koizumi T et al. Manipulation of alternative splicing by a newly developed inhibitor of Clks. J Biol Chem 2004; 279: 24246–24254.

    CAS  PubMed  Google Scholar 

  65. Behrend L, Milne DM, Stoter M, Deppert W, Campbell LE, Meek DW et al. IC261 a specific inhibitor of the protein kinases casein kinase 1-delta and -epsilon triggers the mitotic checkpoint and induces p53-dependent postmitotic effects. Oncogene 2000; 19: 5303–5313.

    CAS  PubMed  Google Scholar 

  66. Rena G, Bain J, Elliott M, Cohen P . D4476 a cell-permeant inhibitor of CK1 suppresses the site-specific phosphorylation and nuclear exclusion of FOXO1a. EMBO Rep 2004; 5: 60–65.

    CAS  PubMed  Google Scholar 

  67. Davies SP, Reddy H, Caivano M, Cohen P . Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 2000; 351: 95–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Tanramluk D, Schreyer A, Pitt WR, Blundell TL . On the origins of enzyme inhibitor selectivity and promiscuity: a case study of protein kinase binding to staurosporine. Chem Biol Drug Des 2009; 74: 16–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Grunwald V, DeGraffenried L, Russel D, Friedrichs WE, Ray RB, Hidalgo M . Inhibitors of mTOR reverse doxorubicin resistance conferred by PTEN status in prostate cancer cells. Cancer Res 2002; 62: 6141–6145.

    CAS  PubMed  Google Scholar 

  70. Cheng SW, Kuzyk MA, Moradian A, Ichu TA, Chang VC, Tien JF et al. Interaction of cyclin-dependent kinase 12/CrkRS with cyclin K1 is required for the phosphorylation of the C-terminal domain of RNA polymerase II. Mol Cell Biol 2012; 32: 4691–4704.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Dai Q, Lei T, Zhao C, Zhong J, Tang YZ, Chen B et al. Cyclin K-containing kinase complexes maintain self-renewal in murine embryonic stem cells. J Biol Chem 2012; 287: 25344–25352.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Blazek D . The cyclin K/Cdk12 complex: an emerging new player in the maintenance of genome stability. Cell Cycle 2012; 11: 1049–1050.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kohoutek J, Blazek D . Cyclin K goes with Cdk12 and Cdk13. Cell Div 2012; 7: 12.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Blazek D, Kohoutek J, Bartholomeeusen K, Johansen E, Hulinkova P, Luo Z et al. The Cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes. Genes Dev 2011; 25: 2158–2172.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Krystof V, Baumli S, Fürst R . Perspective of cyclin-dependent kinase 9 (CDK9) as a drug target. Curr Pharm Des 2012; 18: 2883–2890.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Larochelle S, Amat R, Glover-Cutter K, Sansó M, Zhang C, Allen JJ et al. Cyclin-dependent kinase control of theinitiation-to-elongation switch of RNA polymerase II. Nat Struct Mol Biol 2012; 19: 1108–1115.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Baumli S, Hole AJ, Wang LZ, Noble ME, Endicott JA . The CDK9 tail determines the reaction pathway of positive transcription elongation factor b. Structure 2012; 20: 1788–1795.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Whittaker SR, Te Poele RH, Chan F, Linardopoulos S, Walton MI, Garrett MD et al. The cyclin-dependent kinase inhibitor seliciclib (R-roscovitine; CYC202) decreases the expression of mitotic control genes and prevents entry into mitosis. Cell Cycle 2007; 6: 3114–3131.

    CAS  PubMed  Google Scholar 

  79. Garrofé-Ochoa X, Cosialls AM, Ribas J, Gil J, Boix J . Transcriptional modulation of apoptosis regulators by roscovitine and related compounds. Apoptosis 2011; 16: 660–670.

    PubMed  Google Scholar 

  80. Lee JH, Min C, Kwak SJ, Yeon-Sun Seong YS . Genomewide transcription profiles altered by BMI-1026 and Roscovitine and its implication in cellular senescence. Biochip J 2012; 6: 362–371.

    CAS  Google Scholar 

  81. Mossé YP, Laudenslager M, Longo L, Cole KA, Wood A, Attiyeh EF et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 2008; 455: 930–935.

    PubMed  PubMed Central  Google Scholar 

  82. Janoueix-Lerosey I, Lequin D, Brugières L, Ribeiro A, de Pontual L, Combaret V et al. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature 2008; 455: 967–970.

    CAS  PubMed  Google Scholar 

  83. Schulte JH, Lindner S, Bohrer A, Maurer J, De Preter K, Lefever S et al. MYCN and ALKF1174L are sufficient to drive neuroblastoma development from neural crest progenitor cells. Oncogene 2013; 32: 1059–1065.

    CAS  PubMed  Google Scholar 

  84. Zhu S, Lee JS, Guo F, Shin J, Perez-Atayde AR, Kutok JL et al. Activated ALK collaborates with MYCN in neuroblastoma pathogenesis. Cancer Cell 2012; 21: 362–373.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Schönherr C, Ruuth K, Kamaraj S, Wang CL, Yang HL, Combaret V et al. Anaplastic Lymphoma Kinase (ALK) regulates initiation of transcription of MYCN in neuroblastoma cells. Oncogene 2012; 31: 5193–5200.

    PubMed  Google Scholar 

  86. Breuer D, Kotelkin A, Ammosova T, Kumari N, Ivanov A, Ilatovskiy AV et al. CDK2 regulates HIV-1transcription by phosphorylation of CDK9 on serine 90. Retrovirology 2012; 9: 94.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Faisal A, Vaughan L, Bavetsias V, Sun C, Atrash B, Avery S et al. The Aurora kinase inhibitor CCT137690 downregulates MYCN and sensitizes MYCN-amplified neuroblastoma in vivo. Mol Cancer Ther 2011; 10: 2115–2123.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 2011; 146: 904–917.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Mertz JA, Conery AR, Bryant BM, Sandy P, Balasubramanian S, Mele DA et al. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc Natl Acad Sci USA 2011; 108: 16669–16674.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 2002; 1: 376–386.

    CAS  PubMed  Google Scholar 

  91. Sharma K, Weber C, Baierlein M, Greff Z, Kéri G, Cox J et al. Proteomics strategy for quantitative protein interaction profiling in cell extracts. Nat Methods 2009; 6: 741–744.

    CAS  PubMed  Google Scholar 

  92. Conradt L, Godl K, Schaab C, Tebbe A, Eser S, Diersch S et al. Disclosure of erlotinib as a multikinase inhibitor in pancreatic ductal adenocarcinoma. Neoplasia 2011; 13: 1026–1034.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This article is dedicated to the memory of Jill Lahti and Vincent Kidd. We are grateful to Jacint Boix and Jean Bénard, for the neuroblastoma cell lines. This research was supported by grants from the EEC (FP6 Life Sciences & Health PRO-KINASE and TEMPO Research Projects), the ‘Cancéropole Grand-Ouest’, the ‘Association France-Alzheimer Finistère’, the ‘Association pour la Recherche sur le Cancer’ (ARC-1092), the ‘Ligue Nationale contre le Cancer (Comité Grand-Ouest)’, the Polycystic Kidney Disease Foundation, the Fondation Jérôme Lejeune, the ‘Conseil Régional de Bretagne’ (‘Fonds de Maturation’ 2009) and the ‘Institut National contre le Cancer’ (INCa) GLIOMER and CCCDK8 programs.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H Galons, S D Garbis or L Meijer.

Ethics declarations

Competing interests

Dr Meijer is the co-inventor on the roscovitine patent. Dr Galons, Dr Oumata and Dr Meijer are co-inventors on the CR8 patent. Dr Meijer and Dr Galons are co-founders of ManRos Therapeutics. Dr Meijer is the President and CSO of ManRos Therapeutics.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delehouzé, C., Godl, K., Loaëc, N. et al. CDK/CK1 inhibitors roscovitine and CR8 downregulate amplified MYCN in neuroblastoma cells. Oncogene 33, 5675–5687 (2014). https://doi.org/10.1038/onc.2013.513

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.513

Keywords

This article is cited by

Search

Quick links