Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

OPINION

Analysis of DNA methylation in cancer: location revisited

A Correction to this article was published on 30 April 2018

Abstract

Changes in DNA methylation in cancer have been heralded as promising targets for the development of powerful diagnostic, prognostic, and predictive biomarkers. Despite the existence of more than 14,000 scientific publications describing DNA methylation-based biomarkers and their clinical associations in cancer, only 14 of these biomarkers have been translated into a commercially available clinical test. Methodological and experimental obstacles are both major causes of this disparity, but the genomic location of a DNA methylation-based biomarker is an intrinsic and essential property that also has an important and often overlooked role. Here, we examine the importance of the location of DNA methylation for the development of cancer biomarkers, and take a detailed look at the genomic location and other relevant characteristics of the various biomarkers with commercially available tests. We also emphasize the value of publicly available databases for the development of DNA methylation-based biomarkers and the importance of accurate reporting of the full methodological details of research findings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Success rates for the clinical implementation of cancer biomarkers.
Fig. 2: Genomic location of GSTP1 DNA methylation biomarkers.

Similar content being viewed by others

References

  1. Laird, P. W. The power and the promise of DNA methylation markers. Nat. Rev. Cancer 3, 253–266 (2003).

    Article  PubMed  CAS  Google Scholar 

  2. Carroll, P. R. et al. NCCN Guidelines Insights: Prostate Cancer Early Detection, Version 2.2016. J. Natl Compr. Canc. Netw. 14, 509–519 (2016).

    Article  PubMed  Google Scholar 

  3. Exact Sciences. Clinical guidelines and quality measures. Cologuard http://www.cologuardtest.com/hcp/about-cologuard/clinical-guidelines (2017).

  4. US Preventive Services Task Force. et al. Screening for colorectal cancer: US Preventive Services Task Force recommendation statement. JAMA 315, 2564–2575 (2016).

    Article  CAS  Google Scholar 

  5. The American Cancer Society medical and editorial content team. Colorectal cancer screening tests. The American Cancer Society http://www.cancer.org/content/cancer/en/cancer/colon-rectal-cancer/detection-diagnosis-staging/screening-tests-used.html (2017).

  6. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Older Adult Oncology. NCCN http://www.nccn.org/professionals/physician_gls/pdf/senior.pdf (2017).

  7. Epigenomics AG. China FDA names Epigenomics’ blood-based Septin9 colorectal cancer test a most innovative medical product for 2015. Epigenomics http://www.epigenomics.com/china-fda-names-epigenomics-blood-based-septin9-colorectal-cancer-test-innovative-medical-product-2015/ (2016).

  8. Poste, G. Bring on the biomarkers. Nature 469, 156–157 (2011).

    Article  PubMed  CAS  Google Scholar 

  9. Kern, S. E. Why your new cancer biomarker may never work: recurrent patterns and remarkable diversity in biomarker failures. Cancer Res. 72, 6097–6101 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Munafò, M. R. et al. A manifesto for reproducible science. Nat. Hum. Behav. 1, 0021 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ioannidis, J. P. A. & Bossuyt, P. M. M. Waste, leaks, and failures in the biomarker pipeline. Clin. Chem. 63, 963–972 (2017).

    Article  PubMed  CAS  Google Scholar 

  12. van Gool, A. J. et al. Bridging the translational innovation gap through good biomarker practice. Nat. Rev. Drug Discov. 16, 587–588 (2017).

    Article  PubMed  CAS  Google Scholar 

  13. van Vlodrop, I. J. et al. Analysis of promoter CpG island hypermethylation in cancer: location, location, location! Clin. Cancer Res. 17, 4225–4231 (2011).

    Article  PubMed  CAS  Google Scholar 

  14. Baylin, S. B., Herman, J. G., Graff, J. R., Vertino, P. M. & Issa, J. P. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv. Cancer Res. 72, 141–196 (1998).

    Article  PubMed  CAS  Google Scholar 

  15. Gonzalgo, M. L. et al. The role of DNA methylation in expression of the p19/p16 locus in human bladder cancer cell lines. Cancer Res. 58, 1245–1252 (1998).

    PubMed  CAS  Google Scholar 

  16. Homma, N. et al. Spreading of methylation within RUNX3 CpG island in gastric cancer. Cancer Sci. 97, 51–56 (2006).

    Article  PubMed  CAS  Google Scholar 

  17. Deng, G., Chen, A., Hong, J., Chae, H. S. & Kim, Y. S. Methylation of CpG in a small region of the hMLH1 promoter invariably correlates with the absence of gene expression. Cancer Res. 59, 2029–2033 (1999).

    PubMed  CAS  Google Scholar 

  18. Licchesi, J. D. et al. Transcriptional regulation of Wnt inhibitory factor-1 by Miz-1/c-Myc. Oncogene 29, 5923–5934 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Yoshikawa, H. et al. SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity. Nat. Genet. 28, 29–35 (2001).

    PubMed  CAS  Google Scholar 

  20. Jain, S. et al. Impact of the location of CpG methylation within the GSTP1 gene on its specificity as a DNA marker for hepatocellular carcinoma. PLoS ONE 7, e35789 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Jain, S. et al. Differential methylation of the promoter and first exon of the RASSF1A gene in hepatocarcinogenesis. Hepatol. Res. 45, 1110–1123 (2015).

    Article  PubMed  CAS  Google Scholar 

  22. van Vlodrop, I. J. et al. Prognostic significance of Gremlin1 (GREM1) promoter CpG island hypermethylation in clear cell renal cell carcinoma. Am. J. Pathol. 176, 575–584 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Buffart, T. E. et al. MAL promoter hypermethylation as a novel prognostic marker in gastric cancer. Br. J. Cancer 99, 1802–1807 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Kim, M. S. et al. A promoter methylation pattern in the N-methyl-D-aspartate receptor 2B gene predicts poor prognosis in esophageal squamous cell carcinoma. Clin. Cancer Res. 13, 6658–6665 (2007).

    Article  PubMed  CAS  Google Scholar 

  25. Claus, R. et al. Quantitative DNA methylation analysis identifies a single CpG dinucleotide important for ZAP-70 expression and predictive of prognosis in chronic lymphocytic leukemia. J. Clin. Oncol. 30, 2483–2491 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Esteller, M. et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N. Engl. J. Med. 343, 1350–1354 (2000).

    Article  PubMed  CAS  Google Scholar 

  27. Hegi, M. E. et al. Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. Clin. Cancer Res. 10, 1871–1874 (2004).

    Article  PubMed  CAS  Google Scholar 

  28. Hegi, M. E. et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 352, 997–1003 (2005).

    Article  PubMed  CAS  Google Scholar 

  29. Wick, W. et al. Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly: the NOA-08 randomised, phase 3 trial. Lancet Oncol. 13, 707–715 (2012).

    Article  PubMed  CAS  Google Scholar 

  30. Malmstrom, A. et al. Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the Nordic randomised, phase 3 trial. Lancet Oncol. 13, 916–926 (2012).

    Article  PubMed  CAS  Google Scholar 

  31. Malley, D. S. et al. A distinct region of the MGMT CpG island critical for transcriptional regulation is preferentially methylated in glioblastoma cells and xenografts. Acta Neuropathol. 121, 651–661 (2011).

    Article  PubMed  CAS  Google Scholar 

  32. Everhard, S. et al. Identification of regions correlating MGMT promoter methylation and gene expression in glioblastomas. Neuro Oncol. 11, 348–356 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Bienkowski, M. et al. Clinical Neuropathology practice guide 5-2015: MGMT methylation pyrosequencing in glioblastoma: unresolved issues and open questions. Clin. Neuropathol. 34, 250–257 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jones, P. A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484–492 (2012).

    Article  PubMed  CAS  Google Scholar 

  35. Kulis, M. et al. Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat. Genet. 44, 1236–1242 (2012).

    Article  PubMed  CAS  Google Scholar 

  36. Kang, J. Y. et al. Identification of long-range epigenetic silencing on chromosome 15q25 and its clinical implication in gastric cancer. Am. J. Pathol. 185, 666–678 (2015).

    Article  PubMed  CAS  Google Scholar 

  37. Hu, C. Y. et al. Kidney cancer is characterized by aberrant methylation of tissue-specific enhancers that are prognostic for overall survival. Clin. Cancer Res. 20, 4349–4360 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Klutstein, M., Nejman, D., Greenfield, R. & Cedar, H. DNA methylation in cancer and aging. Cancer Res. 76, 3446–3450 (2016).

    Article  PubMed  CAS  Google Scholar 

  39. Easwaran, H. et al. A DNA hypermethylation module for the stem/progenitor cell signature of cancer. Genome Res. 22, 837–849 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Kristensen, L. S., Raynor, M. P., Candiloro, I. & Dobrovic, A. Methylation profiling of normal individuals reveals mosaic promoter methylation of cancer-associated genes. Oncotarget 3, 450–461 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lehmann-Werman, R. et al. Identification of tissue-specific cell death using methylation patterns of circulating DNA. Proc. Natl Acad. Sci. USA 113, E1826–E1834 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).

    Article  CAS  Google Scholar 

  43. Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer. Cell 163, 1011–1025 (2015).

    Article  CAS  Google Scholar 

  44. Goldman, M., Craft, B., Zhu, J. & Haussler, D. The UCSC Xena system for cancer genomics data visualization and interpretation [abstract]. Cancer Res. 77 (Suppl.), 2584 (2017).

    Article  Google Scholar 

  45. Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    Article  PubMed  Google Scholar 

  46. Koch, A., De Meyer, T., Jeschke, J. & Van Criekinge, W. MEXPRESS: visualizing expression, DNA methylation and clinical TCGA data. BMC Genomics 16, 636 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Ehrlich, M. & Lacey, M. DNA methylation and differentiation: silencing, upregulation and modulation of gene expression. Epigenomics 5, 553–568 (2013).

    Article  PubMed  CAS  Google Scholar 

  48. Zhang, Y. A. et al. SHOX2 is a potent independent biomarker to predict survival of WHO Grade II-III diffuse gliomas. EBioMedicine 13, 80–89 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jeschke, J., Collignon, E. & Fuks, F. Portraits of TET-mediated DNA hydroxymethylation in cancer. Curr. Opin. Genet. Dev. 36, 16–26 (2016).

    Article  PubMed  CAS  Google Scholar 

  50. Stewart, S. K. et al. oxBS-450K: a method for analysing hydroxymethylation using 450K BeadChips. Methods 72, 9–15 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Moran, S. et al. Epigenetic profiling to classify cancer of unknown primary: a multicentre, retrospective analysis. Lancet Oncol. 17, 1386–1395 (2016).

    Article  PubMed  Google Scholar 

  52. Iqbal, S. A., Wallach, J. D., Khoury, M. J., Schully, S. D. & Ioannidis, J. P. Reproducible research practices and transparency across the biomedical literature. PLoS Biol. 14, e1002333 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Freedman, L. P., Venugopalan, G. & Wisman, R. Reproducibility2020: Progress and priorities. F1000Res 6, 604 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Brazma, A. et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat. Genet. 29, 365–371 (2001).

    Article  PubMed  CAS  Google Scholar 

  55. den Dunnen, J. T. et al. HGVS Recommendations for the Description of Sequence Variants: 2016 Update. Hum. Mutat. 37, 564–569 (2016).

    Article  CAS  Google Scholar 

  56. Monk, D. et al. Recommendations for a nomenclature system for reporting methylation aberrations in imprinted domains. Epigenetics https://doi.org/10.1080/15592294.2016.1264561 (2016).

  57. Van Neste, L. et al. A tissue biopsy-based epigenetic multiplex PCR assay for prostate cancer detection. BMC Urol. 12, 16 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Jeronimo, C. et al. Quantitation of GSTP1 methylation in non-neoplastic prostatic tissue and organ-confined prostate adenocarcinoma. J. Natl Cancer Inst. 93, 1747–1752 (2001).

    Article  PubMed  CAS  Google Scholar 

  59. Hoque, M. O. et al. Quantitative methylation-specific polymerase chain reaction gene patterns in urine sediment distinguish prostate cancer patients from control subjects. J. Clin. Oncol. 23, 6569–6575 (2005).

    Article  PubMed  CAS  Google Scholar 

  60. Altimari, A. et al. Diagnostic role of circulating free plasma DNA detection in patients with localized prostate cancer. Am. J. Clin. Pathol. 129, 756–762 (2008).

    Article  PubMed  CAS  Google Scholar 

  61. Cairns, P. et al. Molecular detection of prostate cancer in urine by GSTP1 hypermethylation. Clin. Cancer Res. 7, 2727–2730 (2001).

    PubMed  CAS  Google Scholar 

  62. Crocitto, L. E. et al. Prostate cancer molecular markers GSTP1 and hTERT in expressed prostatic secretions as predictors of biopsy results. Urology 64, 821–825 (2004).

    Article  PubMed  Google Scholar 

  63. Goessl, C., Muller, M., Heicappell, R., Krause, H. & Miller, K. DNA-based detection of prostate cancer in blood, urine, and ejaculates. Ann. NY Acad. Sci. 945, 51–58 (2001).

    Article  PubMed  CAS  Google Scholar 

  64. Goessl, C. et al. DNA-based detection of prostate cancer in urine after prostatic massage. Urology 58, 335–338 (2001).

    Article  PubMed  CAS  Google Scholar 

  65. Gonzalgo, M. L., Nakayama, M., Lee, S. M., De Marzo, A. M. & Nelson, W. G. Detection of GSTP1 methylation in prostatic secretions using combinatorial MSP analysis. Urology 63, 414–418 (2004).

    Article  PubMed  Google Scholar 

  66. Gonzalgo, M. L., Pavlovich, C. P., Lee, S. M. & Nelson, W. G. Prostate cancer detection by GSTP1 methylation analysis of postbiopsy urine specimens. Clin. Cancer Res. 9, 2673–2677 (2003).

    PubMed  CAS  Google Scholar 

  67. Jeronimo, C. et al. Quantitative GSTP1 hypermethylation in bodily fluids of patients with prostate cancer. Urology 60, 1131–1135 (2002).

    Article  PubMed  Google Scholar 

  68. Rogers, C. G. et al. High concordance of gene methylation in post-digital rectal examination and post-biopsy urine samples for prostate cancer detection. J. Urol. 176, 2280–2284 (2006).

    Article  PubMed  CAS  Google Scholar 

  69. Roupret, M. et al. Promoter hypermethylation in circulating blood cells identifies prostate cancer progression. Int. J. Cancer 122, 952–960 (2008).

    Article  PubMed  CAS  Google Scholar 

  70. Sunami, E. et al. Multimarker circulating DNA assay for assessing blood of prostate cancer patients. Clin. Chem. 55, 559–567 (2009).

    Article  PubMed  CAS  Google Scholar 

  71. Bastian, P. J. et al. CpG island hypermethylation profile in the serum of men with clinically localized and hormone refractory metastatic prostate cancer. J. Urol. 179, 529–534 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Bryzgunova, O. E., Morozkin, E. S., Yarmoschuk, S. V., Vlassov, V. V. & Laktionov, P. P. Methylation-specific sequencing of GSTP1 gene promoter in circulating/extracellular DNA from blood and urine of healthy donors and prostate cancer patients. Ann. NY Acad. Sci. 1137, 222–225 (2008).

    Article  PubMed  CAS  Google Scholar 

  73. Chuang, C. K. et al. Hypermethylation of the CpG islands in the promoter region flanking GSTP1 gene is a potential plasma DNA biomarker for detecting prostate carcinoma. Cancer Detect Prev. 31, 59–63 (2007).

    Article  PubMed  CAS  Google Scholar 

  74. Ellinger, J. et al. CpG island hypermethylation at multiple gene sites in diagnosis and prognosis of prostate cancer. Urology 71, 161–167 (2008).

    Article  PubMed  Google Scholar 

  75. Payne, S. R. et al. DNA methylation biomarkers of prostate cancer: confirmation of candidates and evidence urine is the most sensitive body fluid for non-invasive detection. Prostate 69, 1257–1269 (2009).

    Article  PubMed  CAS  Google Scholar 

  76. Trock, B. J. et al. Evaluation of GSTP1 and APC methylation as indicators for repeat biopsy in a high-risk cohort of men with negative initial prostate biopsies. BJU Int. 110, 56–62 (2012).

    Article  PubMed  CAS  Google Scholar 

  77. Melotte, V. et al. N-Myc downstream-regulated gene 4 (NDRG4): a candidate tumor suppressor gene and potential biomarker for colorectal cancer. J. Natl Cancer Inst. 101, 916–927 (2009).

    Article  PubMed  CAS  Google Scholar 

  78. Loh, K. et al. Bone morphogenic protein 3 inactivation is an early and frequent event in colorectal cancer development. Genes Chromosomes Cancer 47, 449–460 (2008).

    Article  PubMed  CAS  Google Scholar 

  79. Warren, J. D. et al. Septin 9 methylated DNA is a sensitive and specific blood test for colorectal cancer. BMC Med. 9, 133 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Lofton-Day, C. et al. DNA methylation biomarkers for blood-based colorectal cancer screening. Clin. Chem. 54, 414–423 (2008).

    Article  PubMed  CAS  Google Scholar 

  81. Schmidt, B. et al. SHOX2 DNA methylation is a biomarker for the diagnosis of lung cancer based on bronchial aspirates. BMC Cancer 10, 600 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. van Kessel, K. E., Van Neste, L., Lurkin, I., Zwarthoff, E. C. & Van Criekinge, W. Evaluation of an epigenetic profile for the detection of bladder cancer in patients with hematuria. J. Urol. 195, 601–607 (2016).

    Article  PubMed  Google Scholar 

  83. Lofton-Day, C. & Ebert, M. Methods and nucleic acids for the detection of colorectal cell proliferative disorders. ES2587068T3 (2016).

  84. Mitchell, S. M. et al. A panel of genes methylated with high frequency in colorectal cancer. BMC Cancer 14, 54 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Devos, T. et al. Method for methylation analysis. EP2479289B1 (2007).

Download references

Acknowledgements

The work of the authors is supported financially by the Maag Lever Darm Stichting (MLDS, grant FP13-15), the Universiteitsfonds Limburg/SWOL, and an SU2C- DCS International Translational Cancer Research Dream Team Grant (Stand Up To Cancer (SU2C)-AACR- DT1415, MEDOCC). SU2C is a programme of the Entertainment Industry Foundation administered by the American Association for Cancer Research.

Author information

Authors and Affiliations

Authors

Contributions

A.K., S.C.J., and M.v.E. researched data for the article, all authors made a substantial contribution to discussion of content, A.K., S.C.J., and M.v.E. wrote the manuscript, and all authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Manon van Engeland.

Ethics declarations

Competing interests

M.v.E. receives research funding from MDxHealth. W.V.C. is a consultant of MDxHealth. The other authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

The Cancer Genome Atlas: https://cancergenome.nih.gov/ The International Cancer Genome Consortium: http://icgc.org/

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koch, A., Joosten, S.C., Feng, Z. et al. Analysis of DNA methylation in cancer: location revisited. Nat Rev Clin Oncol 15, 459–466 (2018). https://doi.org/10.1038/s41571-018-0004-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-018-0004-4

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer