Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Conserved chromosomal functions of RNA interference

Abstract

RNA interference (RNAi), a cellular process through which small RNAs target and regulate complementary RNA transcripts, has well-characterized roles in post-transcriptional gene regulation and transposon repression. Recent studies have revealed additional conserved roles for RNAi proteins, such as Argonaute and Dicer, in chromosome function. By guiding chromatin modification, RNAi components promote chromosome segregation during both mitosis and meiosis and regulate chromosomal and genomic dosage response. Small RNAs and the RNAi machinery also participate in the resolution of DNA damage. Interestingly, many of these lesser-studied functions seem to be more strongly conserved across eukaryotes than are well-characterized functions such as the processing of microRNAs. These findings have implications for the evolution of RNAi since the last eukaryotic common ancestor, and they provide a more complete view of the functions of RNAi.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Small-RNA biogenesis pathways and the evolutionary conservation of their components.
Fig. 2: Chromosome segregation phenotypes of RNAi are highly conserved.
Fig. 3: Faithful chromosome segregation is ensured by the recruitment and protection of centromeric cohesin.
Fig. 4: RNAi regulates dosage at the transcript, chromatin and DNA levels.
Fig. 5: Roles of RNAi in the recognition and resolution of DNA damage.

Similar content being viewed by others

References

  1. Dumesic, P. A. & Madhani, H. D. Recognizing the enemy within: licensing RNA-guided genome defense. Trends Biochem. Sci. 39, 25–34 (2014).

    CAS  PubMed  Google Scholar 

  2. Malone, C. D. & Hannon, G. J. Small RNAs as guardians of the genome. Cell 136, 656–668 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Castel, S. E. & Martienssen, R. A. RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat. Rev. Genet. 14, 100–112 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Siomi, M. C., Sato, K., Pezic, D. & Aravin, A. A. PIWI-interacting small RNAs: the vanguard of genome defence. Nat. Rev. Mol. Cell Biol. 12, 246–258 (2011).

    CAS  PubMed  Google Scholar 

  5. D’Ario, M., Griffiths-Jones, S. & Kim, M. Small RNAs: big impact on plant development. Trends Plant. Sci. 22, 1056–1068 (2017).

    PubMed  Google Scholar 

  6. Alberti, C. & Cochella, L. A framework for understanding the roles of miRNAs in animal development. Development 144, 2548–2559 (2017).

    CAS  PubMed  Google Scholar 

  7. Suh, N. & Blelloch, R. Small RNAs in early mammalian development: from gametes to gastrulation. Development 138, 1653–1661 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ivey, K. N. & Srivastava, D. MicroRNAs as regulators of differentiation and cell fate decisions. Cell Stem Cell 7, 36–41 (2010).

    CAS  PubMed  Google Scholar 

  9. Nicoloso, M. S., Spizzo, R., Shimizu, M., Rossi, S. & Calin, G. A. MicroRNAs—the micro steering wheel of tumour metastases. Nat. Rev. Cancer 9, 293–302 (2009).

    CAS  PubMed  Google Scholar 

  10. Foulkes, W. D., Priest, J. R. & Duchaine, T. F. DICER1: mutations, microRNAs and mechanisms. Nat. Rev. Cancer 14, 662–672 (2014).

    CAS  PubMed  Google Scholar 

  11. Cerutti, H. & Casas-Mollano, J. A. On the origin and functions of RNA-mediated silencing: from protists to man. Curr. Genet. 50, 81–99 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Pong, S. K. & Gullerova, M. Noncanonical functions of microRNA pathway enzymes—Drosha, DGCR8, Dicer and Ago proteins. FEBS Lett. 592, 2973–2986 (2018).

    CAS  PubMed  Google Scholar 

  13. Burger, K. & Gullerova, M. Swiss army knives: non-canonical functions of nuclear Drosha and Dicer. Nat. Rev. Mol. Cell Biol. 16, 417–430 (2015).

    CAS  PubMed  Google Scholar 

  14. Shabalina, S. A. & Koonin, E. V. Origins and evolution of eukaryotic RNA interference. Trends Ecol. Evol. (Amst.) 23, 578–587 (2008).

    Google Scholar 

  15. Court, D. L. et al. RNase III: genetics and function; structure and mechanism. Annu. Rev. Genet. 47, 405–431 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. MacRae, I. J. & Doudna, J. A. Ribonuclease revisited: structural insights into ribonuclease III family enzymes. Curr. Opin. Struct. Biol. 17, 138–145 (2007).

    CAS  PubMed  Google Scholar 

  17. Iyer, L. M., Koonin, E. V. & Aravind, L. Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases. BMC Struct. Biol. 3, 1 (2003).

    PubMed  PubMed Central  Google Scholar 

  18. Swarts, D. C. et al. The evolutionary journey of Argonaute proteins. Nat. Struct. Mol. Biol. 21, 743–753 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Makarova, K. S., Wolf, Y. I., van der Oost, J. & Koonin, E. V. Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biol. Direct 4, 29 (2009).

    PubMed  PubMed Central  Google Scholar 

  20. Bråte, J. et al. Unicellular origin of the animal microRNA machinery. Curr. Biol. 28, 3288–3295.e5 (2018).

    PubMed  PubMed Central  Google Scholar 

  21. Grimson, A. et al. Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 455, 1193–1197 (2008).

    CAS  PubMed  Google Scholar 

  22. Jones-Rhoades, M. W., Bartel, D. P. & Bartel, B. MicroRNAs and their regulatory roles in plants. Annu. Rev. Plant. Biol. 57, 19–53 (2006).

    CAS  PubMed  Google Scholar 

  23. Avesson, L., Reimegard, J., Wagner, E. G. H. & Soderbom, F. MicroRNAs in Amoebozoa: deep sequencing of the small RNA population in the social amoeba Dictyostelium discoideum reveals developmentally regulated microRNAs. RNA 18, 1771–1782 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Molnar, A., Schwach, F., Studholme, D. J., Thuenemann, E. C. & Baulcombe, D. C. miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature 447, 1126–1129 (2007).

    CAS  PubMed  Google Scholar 

  25. Cock, J. M. et al. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465, 617–621 (2010).

    CAS  PubMed  Google Scholar 

  26. Lee, H.-C. et al. Diverse pathways generate microRNA-like RNAs and dicer-independent small interfering RNAs in fungi. Mol. Cell 38, 803–814 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bartel, D. P. Metazoan microRNAs. Cell 173, 20–51 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Roberts, J. T., Cardin, S. E. & Borchert, G. M. Burgeoning evidence indicates that microRNAs were initially formed from transposable element sequences. Mob. Genet. Elements 4, e29255 (2014).

    PubMed  PubMed Central  Google Scholar 

  29. Smalheiser, N. R. & Torvik, V. I. Mammalian microRNAs derived from genomic repeats. Trends Genet. 21, 322–326 (2005).

    CAS  PubMed  Google Scholar 

  30. Qin, S., Jin, P., Zhou, X., Chen, L. & Ma, F. The role of transposable elements in the origin and evolution of microRNAs in human. PLoS One 10, e0131365 (2015).

    PubMed  PubMed Central  Google Scholar 

  31. Piriyapongsa, J. & Jordan, I. K. Dual coding of siRNAs and miRNAs by plant transposable elements. RNA 14, 814–821 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Borges, F. et al. Transposon-derived small RNAs triggered by miR845 mediate genome dosage response in Arabidopsis. Nat. Genet. 50, 186–192 (2018). Borges et al. demonstrate a novel role for small RNAs in regulating dosage at the whole-genome level by preventing the formation of deleterious triploid progeny in A. thaliana.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Han, J. et al. Molecular basis for the recognition of primary microRNAs by the Drosha–DGCR8 complex. Cell 125, 887–901 (2006).

    CAS  PubMed  Google Scholar 

  34. Nguyen, T. A. et al. Functional anatomy of the human microprocessor. Cell 161, 1374–1387 (2015).

    CAS  PubMed  Google Scholar 

  35. Warf, M. B., Johnson, W. E. & Bass, B. L. Improved annotation of C. elegans microRNAs by deep sequencing reveals structures associated with processing by Drosha and Dicer. RNA 17, 563–577 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Vermeulen, A. et al. The contributions of dsRNA structure to Dicer specificity and efficiency. RNA 11, 674–682 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Park, J.-E. et al. Dicer recognizes the 5′ end of RNA for efficient and accurate processing. Nature 475, 201–205 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, H., Kolb, F. A., Brondani, V., Billy, E. & Filipowicz, W. Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J. 21, 5875–5885 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, H., Kolb, F. A., Jaskiewicz, L., Westhof, E. & Filipowicz, W. Single processing center models for human Dicer and bacterial RNase III. Cell 118, 57–68 (2004).

    CAS  PubMed  Google Scholar 

  40. Auyeung, V. C., Ulitsky, I., McGeary, S. E. & Bartel, D. P. Beyond secondary structure: primary-sequence determinants license pri-miRNA hairpins for processing. Cell 152, 844–858 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hoehener, C., Hug, I. & Nowacki, M. Dicer-like enzymes with sequence cleavage preferences. Cell 173, 234–247.e7 (2018). This study identifies Dicers with sequence preferences and demonstrates that this characteristic is employed in the process of DNA elimination.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hu, H. et al. Sequence features associated with microRNA strand selection in humans and flies. BMC Genomics 10, 413 (2009).

    PubMed  PubMed Central  Google Scholar 

  43. Frank, F., Sonenberg, N. & Nagar, B. Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2. Nature 465, 818–822 (2010).

    CAS  PubMed  Google Scholar 

  44. Kawamata, T. & Tomari, Y. Making RISC. Trends Biochem. Sci. 35, 368–376 (2010).

    CAS  PubMed  Google Scholar 

  45. Okamura, K., Ladewig, E., Zhou, L. & Lai, E. C. Functional small RNAs are generated from select miRNA hairpin loops in flies and mammals. Genes. Dev. 27, 778–792 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Goh, E. & Okamura, K. Hidden sequence specificity in loading of single-stranded RNAs onto Drosophila Argonautes. Nucleic Acids Res. 47, 3101–3116 (2019).

    CAS  PubMed  Google Scholar 

  47. Zhao, B. S., Roundtree, I. A. & He, C. Post-transcriptional gene regulation by mRNA modifications. Nat. Rev. Mol. Cell Biol. 18, 31–42 (2017).

    CAS  PubMed  Google Scholar 

  48. Zhang, X., Cozen, A. E., Liu, Y., Chen, Q. & Lowe, T. M. Small RNA modifications: integral to function and disease. Trends Mol. Med. 22, 1025–1034 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ji, L. & Chen, X. Regulation of small RNA stability: methylation and beyond. Cell Res. 22, 624–636 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kurth, H. M. & Mochizuki, K. 2′-O-methylation stabilizes Piwi-associated small RNAs and ensures DNA elimination in Tetrahymena. RNA 15, 675–685 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kirino, Y. & Mourelatos, Z. Mouse Piwi-interacting RNAs are 2′-O-methylated at their 3′ termini. Nat. Struct. Mol. Biol. 14, 347–348 (2007).

    CAS  PubMed  Google Scholar 

  52. Saito, K. et al. Pimet, the Drosophila homolog of HEN1, mediates 2′-O-methylation of Piwi- interacting RNAs at their 3′ ends. Genes. Dev.t 21, 1603–1608 (2007).

    CAS  Google Scholar 

  53. Horwich, M. D. et al. The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr. Biol. 17, 1265–1272 (2007).

    CAS  PubMed  Google Scholar 

  54. Ghildiyal, M. et al. Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science 320, 1077–1081 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kawamura, Y. et al. Drosophila endogenous small RNAs bind to Argonaute 2 in somatic cells. Nature 453, 793–797 (2008).

    CAS  PubMed  Google Scholar 

  56. Okamura, K. et al. The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs. Nature 453, 803–806 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Czech, B. et al. Hierarchical rules for argonaute loading in Drosophila. Mol. Cell 36, 445–456 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Seitz, H., Ghildiyal, M. & Zamore, P. D. Argonaute loading improves the 5′ precision of both microRNAs and their miRNA* strands in flies. Curr. Biol. 18, 147–151 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bernstein, E. et al. Dicer is essential for mouse development. Nat. Genet. 35, 215–217 (2003).

    CAS  PubMed  Google Scholar 

  60. Morita, S. et al. One Argonaute family member, Eif2c2 (Ago2), is essential for development and appears not to be involved in DNA methylation. Genomics 89, 687–696 (2007).

    CAS  PubMed  Google Scholar 

  61. Wang, Y., Medvid, R., Melton, C., Jaenisch, R. & Blelloch, R. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat. Genet. 39, 380–385 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Lee, Y. S. et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117, 69–81 (2004).

    CAS  PubMed  Google Scholar 

  63. Kataoka, Y., Takeichi, M. & Uemura, T. Developmental roles and molecular characterization of a Drosophila homologue of Arabidopsis Argonaute1, the founder of a novel gene superfamily. Genes. Cell 6, 313–325 (2001).

    CAS  Google Scholar 

  64. Grishok, A. et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106, 23–34 (2001).

    CAS  PubMed  Google Scholar 

  65. Yigit, E. et al. Analysis of the C. elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi. Cell 127, 747–757 (2006).

    CAS  PubMed  Google Scholar 

  66. Mochizuki, K. & Gorovsky, M. A. A Dicer-like protein in Tetrahymena has distinct functions in genome rearrangement, chromosome segregation, and meiotic prophase. Genes. Dev. 19, 77–89 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Golden, T. A. et al. Short integuments1/suspensor1/carpel factory, a Dicer homolog, is a maternal effect gene required for embryo development in Arabidopsis. Plant. Physiol. 130, 808–822 (2002).

    PubMed  PubMed Central  Google Scholar 

  68. Thompson, B. E. et al. The Dicer-like1 homolog fuzzy tassel is required for the regulation of meristem determinacy in the inflorescence and vegetative growth in maize. Plant. Cell 26, 4702–4717 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Wienholds, E., Koudijs, M. J., van Eeden, F. J. M., Cuppen, E. & Plasterk, R. H. A. The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nat. Genet. 35, 217–218 (2003).

    CAS  PubMed  Google Scholar 

  70. Sugiyama, T. et al. Polymerase is an essential component of a self-enforcing loop coupling heterochromatin assembly to siRNA production. Proc. Natl Acad. Sci. USA 102, 152–157 (2005).

    CAS  PubMed  Google Scholar 

  71. Provost, P. et al. Dicer is required for chromosome segregation and gene silencing in fission yeast cells. Proc. Natl Acad. Sci. USA 99, 16648–16653 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Volpe, T. et al. RNA interference is required for normal centromere function in fission yeast. Chromosome Res. 11, 137–146 (2003).

    CAS  PubMed  Google Scholar 

  73. Hall, I. M., Noma, K.-I. & Grewal, S. I. S. RNA interference machinery regulates chromosome dynamics during mitosis and meiosis in fission yeast. Proc. Natl Acad. Sci. USA 100, 193–198 (2003).

    CAS  PubMed  Google Scholar 

  74. Roche, B., Arcangioli, B. & Martienssen, R. A. RNA interference is essential for cellular quiescence. Science 354, aah5651 (2016). Sugiyama et al., Provost et al., Volpe et al., Hall et al. and Roche et al. describe the chromosomal phenotypes of RNAi mutants in S. pombe.

    PubMed  PubMed Central  Google Scholar 

  75. Volpe, T. A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837 (2002).

    CAS  PubMed  Google Scholar 

  76. Djupedal, I. et al. RNA Pol II subunit Rpb7 promotes centromeric transcription and RNAi-directed chromatin silencing. Genes. Dev. 19, 2301–2306 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Colmenares, S. U., Buker, S. M., Bühler, M., Dlakić, M. & Moazed, D. Coupling of double-stranded RNA synthesis and siRNA generation in fission yeast RNAi. Mol. Cell 27, 449–461 (2007).

    CAS  PubMed  Google Scholar 

  78. Motamedi, M. R. et al. Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell 119, 789–802 (2004).

    CAS  PubMed  Google Scholar 

  79. Djupedal, I. et al. Analysis of small RNA in fission yeast; centromeric siRNAs are potentially generated through a structured RNA. EMBO J. 28, 3832–3844 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Marasovic, M., Zocco, M. & Halic, M. Argonaute and triman generate dicer-independent prirnas and mature siRNAs to initiate heterochromatin formation. Mol. Cell 52, 173–183 (2013).

    CAS  PubMed  Google Scholar 

  81. Verdel, A. et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303, 672–676 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhang, K., Mosch, K., Fischle, W. & Grewal, S. I. S. Roles of the Clr4 methyltransferase complex in nucleation, spreading and maintenance of heterochromatin. Nat. Struct. Mol. Biol. 15, 381–388 (2008).

    CAS  PubMed  Google Scholar 

  83. Nakayama, J., Rice, J. C., Strahl, B. D., Allis, C. D. & Grewal, S. I. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292, 110–113 (2001).

    CAS  PubMed  Google Scholar 

  84. Nonaka, N. et al. Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast. Nat. Cell Biol. 4, 89–93 (2001).

    Google Scholar 

  85. Bernard, P. et al. Requirement of heterochromatin for cohesion at centromeres. Science 294, 2539–2542 (2001).

    CAS  PubMed  Google Scholar 

  86. Folco, H. D., Pidoux, A. L., Urano, T. & Allshire, R. C. Heterochromatin and RNAi are required to establish CENP-A chromatin at centromeres. Science 319, 94–97 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Yadav, V. et al. RNAi is a critical determinant of centromere evolution in closely related fungi. Proc. Natl Acad. Sci. USA 115, 3108–3113 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Durand-Dubief, M. & Bastin, P. TbAGO1, an argonaute protein required for RNA interference, is involved in mitosis and chromosome segregation in Trypanosoma brucei. BMC Biol. 1, 2 (2003).

    PubMed  PubMed Central  Google Scholar 

  89. Echeverry, M. C., Bot, C., Obado, S. O., Taylor, M. C. & Kelly, J. M. Centromere-associated repeat arrays on Trypanosoma brucei chromosomes are much more extensive than predicted. BMC Genomics 13, 29 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Elde, N. C., Roach, K. C., Yao, M.-C. & Malik, H. S. Absence of positive selection on Centromeric histones in tetrahymena suggests unsuppressed Centromere-drive in lineages lacking male meiosis. J. Mol. Evol. 72, 510–520 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Ruehle, M. D., Orias, E. & Pearson, C. G. Tetrahymena as a unicellular model eukaryote: genetic and genomic tools. Genetics 203, 649–665 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Mukherjee, K., Campos, H. & Kolaczkowski, B. Evolution of animal and plant dicers: early parallel duplications and recurrent adaptation of antiviral RNA binding in plants. Mol. Biol. Evol. 30, 627–641 (2012).

    PubMed  PubMed Central  Google Scholar 

  93. Pek, J. W. & Kai, T. DEAD-box RNA helicase Belle/DDX3 and the RNA interference pathway promote mitotic chromosome segregation. Proc. Natl Acad. Sci. USA 108, 12007–12012 (2011). This study demonstrates the conserved role of RNAi in chromosome segregation in both D. melanogaster and human cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Deshpande, G., Calhoun, G. & Schedl, P. Drosophila argonaute-2 is required early in embryogenesis for the assembly of centric/centromeric heterochromatin, nuclear division, nuclear migration, and germ-cell formation. Genes. Dev. 19, 1680–1685 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Oliver, C., Santos, J. L. & Pradillo, M. Accurate chromosome segregation at first meiotic division requires AGO4, a protein involved in RNA-dependent DNA methylation in Arabidopsis thaliana. Genetics 204, 543–553 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Fukagawa, T. et al. Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nat. Cell Biol. 6, 784–791 (2004). This article suggests a role for Dicer in chromosome segregation in higher eukaryotes and describes not only chromosomal phenotypes but also misregulation of centromeric satellite transcripts from a human chromosome 21 transformed in a chicken DT-40 cell line.

    CAS  PubMed  Google Scholar 

  97. Harfe, B. D., McManus, M. T., Mansfield, J. H., Hornstein, E. & Tabin, C. J. The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc. Natl Acad. Sci. USA 102, 10898–10903 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Huang, C., Wang, X., Liu, X., Cao, S. & Shan, G. RNAi pathway participates in chromosome segregation in mammalian cells. Cell Discov. 1, 15029 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Bogerd, H. P., Whisnant, A. W., Kennedy, E. M., Flores, O. & Cullen, B. R. Derivation and characterization of Dicer- and microRNA-deficient human cells. RNA 20, 923–937 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Kim, Y.-K., Kim, B. & Kim, V. N. Re-evaluation of the roles of DROSHA, Exportin 5, and DICER in microRNA biogenesis. Proc. Natl Acad. Sci. USA 113, E1881–E1889 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Burger, K. et al. Nuclear phosphorylated Dicer processes double-stranded RNA in response to DNA damage. J. Cell Biol. 216, 2373–2389 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. White, E., Schlackow, M., Kamieniarz-Gdula, K., Proudfoot, N. J. & Gullerova, M. Human nuclear Dicer restricts the deleterious accumulation of endogenous double-stranded RNA. Nat. Struct. Mol. Biol. 21, 552–559 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Ravi, A. et al. Proliferation and tumorigenesis of a murine sarcoma cell line in the absence of DICER1. Cancer Cell 21, 848–855 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Swahari, V. et al. Essential function of dicer in resolving DNA damage in the rapidly dividing cells of the developing and malignant cerebellum. Cell Rep. 14, 216–224 (2016).

    CAS  PubMed  Google Scholar 

  105. Varol, D. et al. Dicer deficiency differentially impacts microglia of the developing and adult brain. Immunity 46, 1030–1044.e8 (2017).

    CAS  PubMed  Google Scholar 

  106. Kanellopoulou, C. et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes. Dev. 19, 489–501 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Murchison, E. P., Partridge, J. F., Tam, O. H., Cheloufi, S. & Hannon, G. J. Characterization of Dicer-deficient murine embryonic stem cells. Proc. Natl Acad. Sci. USA 102, 12135–12140 (2005). Kanellopoulou et al. and Murchison et al. describe the phenotype of Dicer1 ablation in mouse embryonic stem cells, detailing the accumulation of centromeric transcripts and the chromatin changes that result.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Hsieh, C.-L. et al. WDHD1 modulates the post-transcriptional step of the centromeric silencing pathway. Nucleic Acids Res. 39, 4048–4062 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Martens, J. H. A. et al. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J. 24, 800–812 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Johnson, W. L. et al. RNA-dependent stabilization of SUV39H1 at constitutive heterochromatin. eLife 6, e25299 (2017).

    PubMed  PubMed Central  Google Scholar 

  111. Shirai, A. et al. Impact of nucleic acid and methylated H3K9 binding activities of Suv39h1 on its heterochromatin assembly. eLife 6, e25317 (2017).

    PubMed  PubMed Central  Google Scholar 

  112. Velazquez Camacho, O. et al. Major satellite repeat RNA stabilize heterochromatin retention of Suv39h enzymes by RNA-nucleosome association and RNA:DNA hybrid formation. eLife 6, 817 (2017).

    Google Scholar 

  113. Muchardt, C. et al. Coordinated methyl and RNA binding is required for heterochromatin localization of mammalian HP1α. EMBO Rep. 3, 975–981 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Maison, C. et al. SUMOylation promotes de novo targeting of HP1α to pericentric heterochromatin. Nat. Genet. 43, 220–227 (2011).

    CAS  PubMed  Google Scholar 

  115. Quénet, D. & Dalal, Y. A long non-coding RNA is required for targeting centromeric protein A to the human centromere. eLife 3, e03254 (2014).

    PubMed  Google Scholar 

  116. McNulty, S. M., Sullivan, L. L. & Sullivan, B. A. Human centromeres produce chromosome- specific and array-specific alpha satellite transcripts that are complexed with CENP-A and CENP-C. Dev. Cell 42, 226–240.e6 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Bouzinba-Segard, H., Guais, A. & Francastel, C. Accumulation of small murine minor satellite transcripts leads to impaired centromeric architecture and function. Proc. Natl Acad. Sci. USA 103, 8709–8714 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Blower, M. D. Centromeric Transcription Regulates Aurora-B Localization and Activation. Cell Rep. 15, 1624–1633 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Ideue, T., Cho, Y., Nishimura, K. & Tani, T. Involvement of satellite I noncoding RNA in regulation of chromosome segregation. Genes. Cell 19, 528–538 (2014).

    CAS  Google Scholar 

  120. Chan, F. L. et al. Active transcription and essential role of RNA polymerase II at the centromere during mitosis. Proc. Natl Acad. Sci. USA 109, 1979–1984 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Rošić, S., Köhler, F. & Erhardt, S. Repetitive centromeric satellite RNA is essential for kinetochore formation and cell division. J. Cell Biol. 207, 335–349 (2014).

    PubMed  PubMed Central  Google Scholar 

  122. Guenatri, M., Bailly, D., Maison, C. & Almouzni, G. Mouse centric and pericentric satellite repeats form distinct functional heterochromatin. J. Cell Biol. 166, 493–505 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Kong, X. et al. Cohesin associates with spindle poles in a mitosis-specific manner and functions in spindle assembly in vertebrate cells. Mol. Biol. Cell 20, 1289–1301 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Yi, Q. et al. HP1 links centromeric heterochromatin to centromere cohesion in mammals. EMBO Rep. 19, e45484 (2018).

    PubMed  PubMed Central  Google Scholar 

  125. Hahn, M. et al. Suv4–20h2 mediates chromatin compaction and is important for cohesin recruitment to heterochromatin. Genes. Dev. 27, 859–872 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Koch, B., Kueng, S., Ruckenbauer, C., Wendt, K. S. & Peters, J.-M. The Suv39h–HP1 histone methylation pathway is dispensable for enrichment and protection of cohesin at centromeres in mammalian cells. Chromosoma 117, 199–210 (2008).

    PubMed  Google Scholar 

  127. Serrano, Á., Rodríguez-Corsino, M. & Losada, A. Heterochromatin protein 1 (HP1) proteins do not drive pericentromeric cohesin enrichment in human cells. PLoS One 4, e5118 (2009).

    PubMed  PubMed Central  Google Scholar 

  128. Yamagishi, Y., Sakuno, T., Shimura, M. & Watanabe, Y. Heterochromatin links to centromeric protection by recruiting shugoshin. Nature 455, 251–255 (2008).

    CAS  PubMed  Google Scholar 

  129. Kang, J. et al. Mitotic centromeric targeting of HP1 and its binding to Sgo1 are dispensable for sister-chromatid cohesion in human cells. Mol. Biol. Cell 22, 1181–1190 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Maida, Y. et al. An RNA-dependent RNA polymerase formed by TERT and the RMRP RNA. Nature 461, 230–235 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Maida, Y. et al. Involvement of telomerase reverse transcriptase in heterochromatin maintenance. Mol. Cell Biol. 34, 1576–1593 (2014).

    PubMed  PubMed Central  Google Scholar 

  132. Topp, C. N., Zhong, C. X. & Dawe, R. K. Centromere-encoded RNAs are integral components of the maize kinetochore. Proc. Natl Acad. Sci. USA 101, 15986–15991 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Maddox, P. S., Oegema, K., Desai, A. & Cheeseman, I. M. ‘Holo’er than thou: chromosome segregation and kinetochore function in C. elegans. Chromosome Res. 12, 641–653 (2004).

    CAS  PubMed  Google Scholar 

  134. Duchaine, T. F. et al. Functional proteomics reveals the biochemical niche of C. elegans DCR-1 in multiple small-RNA-mediated pathways. Cell 124, 343–354 (2006).

    CAS  PubMed  Google Scholar 

  135. Nakamura, M. et al. Dicer-related drh-3 gene functions in germ-line development by maintenance of chromosomal integrity in Caenorhabditis elegans. Genes. Cell 12, 997–1010 (2007).

    CAS  Google Scholar 

  136. Claycomb, J. M. et al. The Argonaute CSR-1 and its 22G-RNA cofactors are required for holocentric chromosome segregation. Cell 139, 123–134 (2009). This study establishes the chromosomal phenotypes of the CSR-1–22G-RNA pathway and proposes a model in which the targets of this pathway ensure boundary formation around the centromeric loci of the holocentric chromosomes of C. elegans.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Knight, S. W. & Bass, B. L. A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 293, 2269–2271 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Drake, M. et al. A requirement for ERK-dependent Dicer phosphorylation in coordinating oocyte-to-embryo transition in C. elegans. Dev. Cell 31, 614–628 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Gassmann, R. et al. An inverse relationship to germline transcription defines centromeric chromatin in C. elegans. Nature 484, 534–537 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Cecere, G., Hoersch, S., O’Keeffe, S., Sachidanandam, R. & Grishok, A. Global effects of the CSR-1 RNA interference pathway on the transcriptional landscape. Nat. Struct. Mol. Biol. 21, 358–365 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Gerson-Gurwitz, A. et al. A Small RNA-catalytic Argonaute pathway tunes germline transcript levels to ensure embryonic divisions. Cell 165, 396–409 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. She, X., Xu, X., Fedotov, A., Kelly, W. G. & Maine, E. M. Regulation of heterochromatin assembly on unpaired chromosomes during caenorhabditis elegans meiosis by components of a small RNA-mediated pathway. PLoS Genet. 5, e1000624–15 (2009).

    Google Scholar 

  143. Ellermeier, C. et al. RNAi and heterochromatin repress centromeric meiotic recombination. Proc. Natl Acad. Sci. USA 107, 8701–8705 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Maine, E. M. et al. EGO-1, a putative RNA-dependent RNA polymerase, is required for heterochromatin assembly on unpaired DNA during C. elegans meiosis. Curr. Biol. 15, 1972–1978 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Pavelec, D. M., Lachowiec, J., Duchaine, T. F., Smith, H. E. & Kennedy, S. Requirement for the ERI/DICER complex in endogenous RNA interference and sperm development in caenorhabditis elegans. Genetics 183, 1283–1295 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Nonomura, K.-I. et al. A germ cell specific gene of the ARGONAUTE family is essential for the progression of premeiotic mitosis and meiosis during sporogenesis in rice. Plant. Cell 19, 2583–2594 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Fan, Y. et al. PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice. Proc. Natl Acad. Sci. USA 113, 15144–15149 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Komiya, R. et al. Rice germline-specific Argonaute MEL1 protein binds to phasiRNAs generated from more than 700 lincRNAs. Plant. J. 78, 385–397 (2014).

    CAS  PubMed  Google Scholar 

  149. Singh, M. et al. Production of viable gametes without meiosis in maize deficient for an Argonaute protein. Plant. Cell 23, 443–458 (2012).

    Google Scholar 

  150. Olmedo-Monfil, V. et al. Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature 464, 628–632 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Martínez, G. et al. Paternal easiRNAs regulate parental genome dosage in Arabidopsis. Nat. Genet. 50, 193–198 (2018). Martínez et al. demonstrate a novel role for small RNAs in regulating dosage at the whole-genome level by preventing the formation of deleterious triploid progeny in A. thaliana.

    PubMed  Google Scholar 

  152. Erdmann, R. M., Satyaki, P. R. V., Klosinska, M. & Gehring, M. A small RNA pathway mediates allelic dosage in endosperm. Cell Rep. 21, 3364–3372 (2017).

    CAS  PubMed  Google Scholar 

  153. Jiang, H. et al. Ectopic application of the repressive histone modification H3K9me2 establishes post-zygotic reproductive isolation in Arabidopsis thaliana. Genes. Dev. 31, 1272–1287 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Shiu, P. K. T., Raju, N. B., Zickler, D. & Metzenberg, R. L. Meiotic silencing by unpaired DNA. Cell 107, 905–916 (2001). This work identifies the phenomenon of meiotic silencing of unpaired DNA (MSUD) and demonstrates roles for an RdRP and the RNAi pathway in the process.

    CAS  PubMed  Google Scholar 

  155. Alexander, W. G. et al. DCL-1 colocalizes with other components of the MSUD machinery and is required for silencing. Fungal Genet. Biol. 45, 719–727 (2008).

    CAS  PubMed  Google Scholar 

  156. Lee, D. W., Pratt, R. J., McLaughlin, M. & Aramayo, R. An argonaute-like protein is required for meiotic silencing. Genetics 164, 821–828 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Hammond, T. M. et al. Identification of small RNAs associated with meiotic silencing by unpaired DNA. Genetics 194, 279–284 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Hammond, T. M. et al. SAD-3, a Putative helicase required for meiotic silencing by unpaired DNA, interacts with other components of the silencing machinery. G3 1, 369–376 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Samarajeewa, D. A. et al. Efficient detection of unpaired DNA requires a member of the rad54-like family of homologous recombination proteins. Genetics 198, 895–904 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Onaka, A. T. et al. Rad51 and Rad54 promote noncrossover recombination between centromere repeats on the same chromatid to prevent isochromosome formation. Nucleic Acids Res. 44, 10744–10757 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Hammond, T. M. Sixteen years of meiotic silencing by unpaired DNA. Adv. Genet. 97, 1–42 (2017).

    CAS  PubMed  Google Scholar 

  162. Hammond, T. M. et al. Fluorescent and bimolecular-fluorescent protein tagging of genes at their native loci in Neurospora crassa using specialized double-joint PCR plasmids. Fungal Genet. Biol. 48, 866–873 (2011).

    CAS  PubMed  Google Scholar 

  163. Wang, Y., Smith, K. M., Taylor, J. W., Freitag, M. & Stajich, J. E. Endogenous small RNA mediates meiotic silencing of a novel DNA transposon. G3 5, 1949–1960 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Raju, N. B., Metzenberg, R. L. & Shiu, P. K. T. Neurospora spore killers Sk-2 and Sk-3 Suppress meiotic silencing by unpaired DNA. Genetics 176, 43–52 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Modzelewski, A. J., Holmes, R. J., Hilz, S., Grimson, A. & Cohen, P. E. AGO4 regulates entry into meiosis and influences silencing of sex chromosomes in the male mouse germline. Dev. Cell 23, 251–264 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Lucchesi, J. C. & Kuroda, M. I. Dosage compensation in Drosophila. Cold Spring Harbor Perspectives in Biology 7, 1–21 (2015).

    CAS  Google Scholar 

  167. Franke, A. & Baker, B. S. The rox1 and rox2 RNAs are essential components of the compensasome, which mediates dosage compensation in Drosophila. Mol. Cell 4, 117–122 (1999).

    CAS  PubMed  Google Scholar 

  168. Deng, X. & Meller, V. H. roX RNAs are required for increased expression of X-linked genes in Drosophila melanogaster males. Genetics 174, 1859–1866 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Menon, D. U. & Meller, V. H. A role for siRNA in X-chromosome dosage compensation in Drosophila melanogaster. Genetics 191, 1023–1028 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Menon, D. U., Coarfa, C., Xiao, W., Gunaratne, P. H. & Meller, V. H. siRNAs from an X-linked satellite repeat promote X-chromosome recognition in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 111, 16460–16465 (2014). This work identifies the siRNAs that target chromatin and assist in the X chromosome dosage compensation mechanism in D. melanogaster.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Deshpande, N. & Meller, V. H. Chromatin that guides dosage compensation is modulated by the siRNA pathway in Drosophila melanogaster. Genetics 209, 1085–1097 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Noto, T. & Mochizuki, K. Whats, hows and whys of programmed DNA elimination in Tetrahymena. Open. Biol. 7, 170172 (2017).

    PubMed  PubMed Central  Google Scholar 

  173. Mochizuki, K. Conjugation-specific small RNAs in Tetrahymena have predicted properties of scan (scn) RNAs involved in genome rearrangement. Genes Dev. 18, 2068–2073 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Noto, T. et al. The Tetrahymena argonaute-binding protein Giw1p directs a mature argonaute–siRNA complex to the nucleus. Cell 140, 692–703 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Noto, T. & Mochizuki, K. Small RNA-mediated trans-nuclear and trans-element communications in tetrahymena DNA elimination. Curr. Biol. 28, 1938–1949.e5 (2018).

    CAS  PubMed  Google Scholar 

  176. Liu, Y. et al. RNAi-dependent H3K27 methylation is required for heterochromatin formation and DNA elimination in Tetrahymena. Genes Dev. 21, 1530–1545 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Madireddi, M. T. et al. Pdd1p, a novel chromodomain-containing protein, links heterochromatin assembly and DNA elimination in Tetrahymena. Cell 87, 75–84 (1996).

    CAS  PubMed  Google Scholar 

  178. Coyne, R. S., Nikiforov, M. A., Smothers, J. F., Allis, C. D. & Yao, M. C. Parental expression of the chromodomain protein Pdd1p is required for completion of programmed DNA elimination and nuclear differentiation. Mol. Cell 4, 865–872 (1999).

    CAS  PubMed  Google Scholar 

  179. Taverna, S. D., Coyne, R. S. & Allis, C. D. Methylation of histone H3 at lysine 9 targets programmed DNA elimination in tetrahymena. Cell 110, 701–711 (2002).

    CAS  PubMed  Google Scholar 

  180. Noto, T. et al. Small-RNA-mediated genome-wide trans-recognition network in tetrahymena DNA elimination. Mol. Cell 59, 229–242 (2015). This study establishes the small-RNA repertoire that ensures the fidelity of the DNA elimination process.

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Vogt, A. & Mochizuki, K. A domesticated piggybac transposase interacts with heterochromatin and catalyzes reproducible DNA elimination in tetrahymena. PLoS Genet. 9, e1004032 (2013).

    PubMed  PubMed Central  Google Scholar 

  182. Cheng, C.-Y., Vogt, A., Mochizuki, K. & Yao, M.-C. A domesticated piggyBac transposase plays key roles in heterochromatin dynamics and DNA cleavage during programmed DNA deletion in Tetrahymena thermophila. Mol. Biol. Cell 21, 1753–1762 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Lhuillier-Akakpo, M. et al. Local effect of enhancer of zeste-like reveals cooperation of epigenetic and cis-acting determinants for zygotic genome rearrangements. PLoS Genet. 10, e1004665 (2014).

    PubMed  PubMed Central  Google Scholar 

  184. Sandoval, P. Y., Swart, E. C., Arambasic, M. & Nowacki, M. Functional diversification of Dicer-like proteins and small RNAs required for genome sculpting. Dev. Cell 28, 174–188 (2014).

    CAS  PubMed  Google Scholar 

  185. Fang, W., Wang, X., Bracht, J. R., Nowacki, M. & Landweber, L. F. Piwi-interacting RNAs protect DNA against loss during oxytricha genome rearrangement. Cell 151, 1243–1255 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Postberg, J. et al. 27nt-RNAs guide histone variant deposition via ‘RNA-induced DNA replication interference’ and thus transmit parental genome partitioning in Stylonychia. Epigenetics Chromatin. 11, 31 (2018).

    PubMed  PubMed Central  Google Scholar 

  187. Zaratiegui, M. et al. RNAi promotes heterochromatic silencing through replication-coupled release of RNA Pol II. Nature 479, 135–138 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Castel, S. E. et al. Dicer promotes transcription termination at sites of replication stress to maintain genome stability. Cell 159, 572–583 (2014). This article demonstrates the importance of Dicer in resolving replication–transcription collisions and consequently maintaining the copy number of tandemly repeated regions of the S. pombe genome.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Aguilera, A. & García-Muse, T. R loops: from transcription byproducts to threats to genome stability. Mol. Cell 46, 115–124 (2012).

    CAS  PubMed  Google Scholar 

  190. Khurana, J. S., Clay, D. M., Moreira, S., Wang, X. & Landweber, L. F. Small RNA-mediated regulation of DNA dosage in the ciliate Oxytricha. RNA 24, 18–29 (2017).

    PubMed  Google Scholar 

  191. Lee, H.-C. et al. qiRNA is a new type of small interfering RNA induced by DNA damage. Nature 459, 274–277 (2009). This work identifies the small RNAs that participate in the DNA damage response in N. crassa.

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Cecere, G. & Cogoni, C. Quelling targets the rDNA locus and functions in rDNA copy number control. BMC Microbiol. 9, 44 (2009).

    PubMed  PubMed Central  Google Scholar 

  193. Cam, H. P. et al. Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nat. Genet. 37, 809–819 (2005).

    CAS  PubMed  Google Scholar 

  194. Yang, Q., Ye, Q. A. & Liu, Y. Mechanism of siRNA production from repetitive DNA. Genes Dev. 29, 526–537 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Peng, J. C. & Karpen, G. H. H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability. Nat. Cell Biol. 9, 25–35 (2006).

    PubMed  PubMed Central  Google Scholar 

  196. Peng, J. C. & Karpen, G. H. Heterochromatic genome stability requires regulators of histone H3 K9 methylation. PLoS Genet. 5, e1000435 (2009).

    PubMed  PubMed Central  Google Scholar 

  197. Francia, S. et al. Site-specific DICER and DROSHA RNA products control the DNA-damage response. Nature 488, 231–235 (2012). This work describes the role of DICER and DROSHA in the DNA damage response in human, mouse and zebrafish.

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Tang, K.-F. et al. Decreased Dicer expression elicits DNA damage and up-regulation of MICA and MICB. J. Cell Biol. 182, 233–239 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Chang, H. H. Y., Pannunzio, N. R., Adachi, N. & Lieber, M. R. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol. 18, 495–506 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Ciccia, A. & Elledge, S. J. The DNA damage response: making it safe to play with knives. Mol. Cell 40, 179–204 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Carmichael, J. B., Provost, P., Ekwall, K. & Hobman, T. C. Ago1 and Dcr1, two core components of the RNA interference pathway, functionally diverge from Rdp1 in regulating cell cycle events in Schizosaccharomyces pombe. Mol. Biol. Cell 15, 1425–1435 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Kloc, A., Zaratiegui, M., Nora, E. & Martienssen, R. RNA interference guides histone modification during the S phase of chromosomal replication. Curr. Biol. 18, 490–495 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Catalanotto, C., Nolan, T. & Cogoni, C. Homology effects in Neurospora crassa. FEMS Microbiol. Lett. 254, 182–189 (2006).

    CAS  PubMed  Google Scholar 

  204. Chang, S. S. et al. Homologous recombination as a mechanism to recognize repetitive DNA sequences in an RNAi pathway. Genes Dev. 27, 145–150 (2013).

    PubMed  PubMed Central  Google Scholar 

  205. Wei, W. et al. A role for small RNAs in DNA double-strand break repair. Cell 149, 101–112 (2012).

    CAS  PubMed  Google Scholar 

  206. Miki, D. et al. Efficient generation of diRNAs requires components in the posttranscriptional gene silencing pathway. Sci. Rep. 7, 301 (2017).

    PubMed  PubMed Central  Google Scholar 

  207. Michalik, K. M., Böttcher, R. & Förstemann, K. A small RNA response at DNA ends in Drosophila. Nucleic Acids Res. 40, 9596–9603 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Merk, K. et al. Splicing stimulates siRNA formation at Drosophila DNA double-strand breaks. PLoS Genet. 13, e1006861 (2017).

    PubMed  PubMed Central  Google Scholar 

  209. Schmidts, I., Böttcher, R., Mirkovic-Hösle, M. & Förstemann, K. Homology directed repair is unaffected by the absence of siRNAs in Drosophila melanogaster. Nucleic Acids Res. 44, 8261–8271 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Burger, K. & Gullerova, M. Nuclear re-localization of Dicer in primary mouse embryonic fibroblast nuclei following DNA damage. PLoS Genet. 14, e1007151 (2018).

    PubMed  PubMed Central  Google Scholar 

  211. Michelini, F. et al. Damage-induced lncRNAs control the DNA damage response through interaction with DDRNAs at individual double-strand breaks. Nat. Cell Biol. 19, 1400–1411 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Francia, S., Cabrini, M., Matti, V., Oldani, A. & d’Adda di Fagagna, F. DICER, DROSHA and DNA damage response RNAs are necessary for the secondary recruitment of DNA damage response factors. J. Cell Sci. 129, 1468–1476 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Gao, M. et al. Ago2 facilitates Rad51 recruitment and DNA double-strand break repair by homologous recombination. Cell Res. 24, 532–541 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Burger, K., Schlackow, M. & Gullerova, M. Tyrosine kinase c-Abl couples RNA polymerase II transcription to DNA double-strand breaks. Nucleic Acids Res. 47, 3467–3484 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Lu, W.-T. et al. Drosha drives the formation of DNA:RNA hybrids around DNA break sites to facilitate DNA repair. Nat. Commun. 9, 532 (2018).

    PubMed  PubMed Central  Google Scholar 

  216. Wang, Q. & Goldstein, M. Small RNAs recruit chromatin-modifying enzymes MMSET and Tip60 to reconfigure damaged DNA upon double-strand break and facilitate repair. Cancer Res. 76, 1904–1915 (2016).

    CAS  PubMed  Google Scholar 

  217. Skourti-Stathaki, K., Kamieniarz-Gdula, K. & Proudfoot, N. J. R-loops induce repressive chromatin marks over mammalian gene terminators. Nature 516, 436–439 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Ohle, C. et al. Transient RNA–DNA hybrids are required for efficient double-strand break repair. Cell 167, 1001–1010.e7 (2016).

    CAS  PubMed  Google Scholar 

  219. Marteijn, J. A., Lans, H., Vermeulen, W. & Hoeijmakers, J. H. J. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat. Rev. Mol. Cell Biol. 15, 465–481 (2014).

    CAS  PubMed  Google Scholar 

  220. Chitale, S. & Richly, H. DICER and ZRF1 contribute to chromatin decondensation during nucleotide excision repair. Nucleic Acids Res. 45, 5901–5912 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Chitale, S. & Richly, H. DICER- and MMSET-catalyzed H4K20me2 recruits the nucleotide excision repair factor XPA to DNA damage sites. J. Cell Biol. 217, 527–540 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Calses, P. C. et al. DGCR8 mediates repair of UV-induced DNA damage independently of RNA processing. Cell Rep. 19, 162–174 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Schalk, C. et al. Small RNA-mediated repair of UV-induced DNA lesions by the DNA damage-binding protein 2 and Argonaute 1. Proc. Natl Acad. Sci. USA 114, E2965–E2974 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Ozata, D. M., Gainetdinov, I., Zoch, A., OCarroll, D. & Zamore, P. D. PIWI-interacting RNAs: small RNAs with big functions. Nat. Rev. Genet. 20, 89–108 (2019).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank B. Roche for critical input and other members of the Martienssen Lab for helpful discussions. Research in the Martienssen laboratory is supported by the Howard Hughes Medical Institute and the National Institutes of Health (GM076396).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Robert A. Martienssen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

microRNAs

(miRNAs). Short, non-coding RNAs derived from hairpin structures that target mRNAs for cleavage and/or degradation in post-transcriptional gene silencing.

Small interfering RNAs

(siRNAs). Short, non-coding RNAs derived from longer double-stranded RNA molecules that target complementary RNAs in repressive mechanisms.

Last eukaryotic common ancestor

(LECA). The most evolutionarily recent ancestral eukaryotic cell that gave rise to all modern eukaryotic organisms.

Co-transcriptional gene silencing

(CTGS). A mechanism of targeting nascent RNA molecules produced by an RNA polymerase for the formation of repressive epigenetic modifications at the transcribed loci.

Cohesin

A large multi-subunit protein complex that participates in a variety of processes, including sister chromatid separation during cell division, the attachment of spindles to chromosomes and the repair of DNA damage through recombination.

Chromosome bridging

The abnormal formation of a continuous piece of DNA between the two new daughter nuclei in late anaphase, caused by a number of mechanisms that prevent the separation of sister chromatids or the migration of chromatids to the new nuclei.

Chicken DT40 cell line

A lymphoma-derived cell line that is widely used, owing to its high levels of homologous recombination. It can also be transformed with whole chromosomes by microcell fusion to achieve chromosomal hybrids.

Apospory

The production of gametophytes directly from diploid sporophytes, without meiosis.

Polyploidy

A genomic state defined by having more than two (in the case of diploid organisms) homologous sets of chromosomes.

Synthetic lethality

A genetic relationship in which the combination of mutations in two genes is highly deleterious, whereas each individual mutation is not.

Ribosomal DNA

(rDNA). A tandemly repeated genomic locus that encodes rRNA and leads to the production of ribosomes.

Recombination

The linking of DNA segments to form a new molecule; it can be used in DNA damage repair in a process called homologous recombination (HR), in which sequences are exchanged between similar stretches of DNA.

Nucleoli

A dense nuclear structure, composed primarily of rDNA, that is the site of ribosome biogenesis.

Double-strand breaks

(DSBs). A form of DNA damage in which the covalent bonds of the DNA double helix are severed at the same locus; this lesion is repaired through either HR or the less precise mechanism of non-homologous end joining, depending on a number of factors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutbrod, M.J., Martienssen, R.A. Conserved chromosomal functions of RNA interference. Nat Rev Genet 21, 311–331 (2020). https://doi.org/10.1038/s41576-019-0203-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-019-0203-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing