Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Review Article

Principles of tumor immunosurveillance and implications for immunotherapy

Abstract

Although antigen loss variants, major histocompatibility (MHC) class I down-regulation, or the expression of inhibitory molecules may explain the failure of immunosurveillance against some tumors, this seems not to apply for many other solid peripheral or lymphohematopoietic tumors. Why then is immunosurveillance so ineffective and can it be improved? This review focuses on one important aspect of tumor immunity, namely the relevance of antigen dose and localization. Immune responses in vivo are induced in organized lymphoid tissues, i.e., in lymph nodes and spleen. The antigen dose that reaches secondary lymphoid organs over time is a crucial parameter that drives antiviral and antitumoral immune responses. Tumors use various strategies to prevent efficient presentation of their antigens in lymphoid organs. A major obstacle to the induction of an endogenous tumor-specific cytotoxic T lymphocyte (CTL) response is the inefficient presentation of tumor antigen on MHC class I molecules of professional antigen-presenting cells. Peripheral solid tumors that develop outside lymphoid organs are, therefore, often ignored by the immune system. In other situations, tumors — especially of lymphohematopoietic origin — may tolerize specific CTLs. Understanding tumor immunosurveillance is key to the design of efficient antitumor vaccines. Attempts to improve immunity to tumors include vaccination strategies to (a) provide the tumor antigen to secondary lymphoid organs using recombinant viruses or dendritic cells as carriers, (b) express costimulatory signals on tumor cells, or (c) improve the efficiency of cross-priming.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Bachmann MF, Zinkernagel RM . Neutralizing anti-viral B cell responses Annu Rev Immunol 1997 15: 235–270

    CAS  PubMed  Google Scholar 

  2. Fenner F, McAuslan BR, Mims CA, Sambrook J, White DO . The Biology of Animal Viruses London: Academic Press 1974

    Google Scholar 

  3. Baumgarth N, Herman OC, Jager GC, Brown LE, Herzenberg LA, Chen J . B-1 and B-2 cell–derived immunoglobulin M antibodies are nonredundant components of the protective response to influenza virus infection J Exp Med 2000 192: 271–280

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Zinkernagel RM, Bachmann MF, Kündig TM, Oehen S, Pircher H, Hengartner H . On immunological memory Annu Rev Immunol 1996 14: 333–367

    CAS  PubMed  Google Scholar 

  5. Boon T, Coulie PG, Van DE . Tumor antigens recognized by T cells Immunol Today 1997 18: 267–268

    CAS  PubMed  Google Scholar 

  6. Old LJ . Tumor immunology: the first century Curr Opin Immunol 1992 4: 603–607

    CAS  PubMed  Google Scholar 

  7. Burnet FM . Cancer: a biological approach Br Med J 1957 1: 779–786

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Burnet FM . Immunological aspects of malignant disease Lancet 1967 1: 1171–1174

    CAS  PubMed  Google Scholar 

  9. Pardoll D . T cells and tumours Nature 2001 411: 1010–1012

    CAS  PubMed  Google Scholar 

  10. Smyth MJ, Godfrey DI, Trapani JA . A fresh look at tumor immunosurveillance and immunotherapy Nat Immunol 2001 2: 293–299

    CAS  PubMed  Google Scholar 

  11. Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA . Fas ligand–induced apoptosis as a mechanism of immune privilege Science 1995 270: 1189–1192

    CAS  PubMed  Google Scholar 

  12. Garrido F, Ruiz-Cabello F, Cabrera T et al. Implications for immunosurveillance of altered HLA class I phenotypes in human tumours Immunol Today 1997 18: 89–95

    CAS  PubMed  Google Scholar 

  13. Chen JJ, Sun Y, Nabel GJ . Regulation of the proinflammatory effects of Fas ligand (CD95L) Science 1998 282: 1714–1717

    CAS  PubMed  Google Scholar 

  14. Benitez R, Godelaine D, Lopez-Nevot MA et al. Mutations of the beta2-microglobulin gene result in a lack of HLA class I molecules on melanoma cells of two patients immunized with MAGE peptides Tissue Antigens 1998 52: 520–529

    CAS  PubMed  Google Scholar 

  15. Johnson A, France J, Sy MS, Harding CV . Down-regulation of the transporter for antigen presentation, proteasome subunits and MHC class I in tumor cell lines Cancer Res 1998 58: 3660–3667

    Google Scholar 

  16. Rosenberg SA, Spiess P, Lafreniere R . A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes Science 1986 233: 1318–1321

    CAS  PubMed  Google Scholar 

  17. Whiteside TL . Tumor-infiltrating lymphocytes in human solid tumors Immunol Ser 1994 61: 137–148

    CAS  PubMed  Google Scholar 

  18. Hiesse C, Rieu P, Kriaa F et al. Malignancy after renal transplantation: analysis of incidence and risk factors in 1700 patients followed during a 25-year period Transplant Proc 1997 29: 831–833

    CAS  PubMed  Google Scholar 

  19. Newstead CG . Assessment of risk of cancer after renal transplantation Lancet 1998 351: 610–611

    CAS  PubMed  Google Scholar 

  20. Kelly DM, Emre S, Guy SR, Miller CM, Schwartz ME, Sheiner PA . Liver transplant recipients are not at increased risk for nonlymphoid solid organ tumors Cancer 1998 83: 1237–1243

    CAS  PubMed  Google Scholar 

  21. Stutman O . Immunodepression and malignancy Adv Cancer Res 1975 22: 261–422

    CAS  PubMed  Google Scholar 

  22. Shankaran V, Ikeda H, Bruce AT et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity Nature 2001 410: 1107–1111

    CAS  PubMed  Google Scholar 

  23. van den Broek MF, Kägi D, Ossendorp F et al. Decreased tumor surveillance in perforin-deficient mice J Exp Med 1996 184: 1781–1790

    CAS  PubMed  Google Scholar 

  24. Smyth MJ, Thia KY, Street SE, MacGregor D, Godfrey DI, Trapani JA . Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma J Exp Med 2000 192: 755–760

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Houghton AN, Scheinberg DA . Monoclonal antibody therapies — a “constant” threat to cancer Nat Med 2000 6: 373–374

    CAS  PubMed  Google Scholar 

  26. Carter P . Improving the efficacy of antibody-based cancer therapies Nat Rev Cancer 2001 1: 118–129

    CAS  PubMed  Google Scholar 

  27. Clynes R, Takechi Y, Moroi Y, Houghton A, Ravetch JV . Fc receptors are required in passive and active immunity to melanoma Proc Natl Acad Sci USA 1998 95: 652–656

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Clynes RA, Towers TL, Presta LG, Ravetch JV . Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets Nat Med 2000 6: 443–446

    CAS  PubMed  Google Scholar 

  29. Sampson JH, Crotty LE, Lee S et al. Unarmed, tumor-specific monoclonal antibody effectively treats brain tumors Proc Natl Acad Sci USA 2000 97: 7503–7508

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Idusogie EE, Presta LG, Gazzano-Santoro H et al. Mapping of the C1q binding site on rituxan, a chimeric antibody with a human IgG1 Fc J Immunol 2000 164: 4178–4184

    CAS  PubMed  Google Scholar 

  31. Regnault A, Lankar D, Lacabanne V et al. Fcgamma receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I–restricted antigen presentation after immune complex internalization J Exp Med 1999 189: 371–380

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Machy P, Serre K, Leserman L . Class I–restricted presentation of exogenous antigen acquired by Fcgamma receptor-mediated endocytosis is regulated in dendritic cells Eur J Immunol 2000 30: 848–857

    CAS  PubMed  Google Scholar 

  33. Dhodapkar KM, Krasovsky J, Williamson B, Dhodapkar MV . Antitumor monoclonal antibodies enhance cross-presentation of cellular antigens and the generation of myeloma-specific killer T cells by dendritic cells J Exp Med 2002 195: 125–133

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Dyall R, Vasovic LV, Clynes RA, Nikolic-Zugic J . Cellular requirements for the monoclonal antibody-mediated eradication of an established solid tumor Eur J Immunol 1999 29: 30–37

    CAS  PubMed  Google Scholar 

  35. Qin Z, Richter G, Schuler T, Ibe S, Cao X, Blankenstein T . B cells inhibit induction of T cell–dependent tumor immunity Nat Med 1998 4: 627–630

    CAS  PubMed  Google Scholar 

  36. Ford WL . Lymphocyte migration and immune responses Prog Allergy 1975 19: 1–59

    CAS  PubMed  Google Scholar 

  37. Mackay CR . T cell memory: the connection between function, phenotype and migration pathways Immunol Today 1991 12: 189–192

    CAS  PubMed  Google Scholar 

  38. Zinkernagel RM, Ehl S, Aichele P, Oehen S, Kündig TM, Hengartner H . Antigen localisation regulates immune responses in a dose- and time-dependent fashion: a geographical view of immune reactivity Immunol Rev 1997 156: 199–209

    CAS  PubMed  Google Scholar 

  39. Goodnow CC . Chance encounters and organized rendezvous Immunol Rev 1997 156: 5–10

    CAS  PubMed  Google Scholar 

  40. Kündig TM, Bachmann MF, DiPaolo C et al. Fibroblasts as efficient antigen-presenting cells in lymphoid organs Science 1995 268: 1343–1347

    PubMed  Google Scholar 

  41. Karrer U, Althage A, Odermatt B et al. On the key role of secondary lymphoid organs in antiviral immune responses studied in alymphoplastic (aly/aly) and spleenless (Hox11−/−) mutant mice J Exp Med 1997 185: 2157–2170

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ochsenbein AF, Sierro S, Odermatt B et al. Roles of tumour localization, second signals and cross priming in cytotoxic T-cell induction Nature 2001 411: 1058–1064

    CAS  PubMed  Google Scholar 

  43. Zinkernagel RM, Hengartner H . Regulation of the immune response by antigen Science 2001 293: 251–253

    CAS  PubMed  Google Scholar 

  44. Ohashi PS, Oehen S, Buerki K et al. Ablation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice Cell 1991 65: 305–317

    CAS  PubMed  Google Scholar 

  45. Chen L . Immunological ignorance of silent antigens as an explanation of tumor evasion Immunol Today 1998 19: 27–30

    CAS  PubMed  Google Scholar 

  46. Frazer IH . Cell-mediated immunity to papilloma viruses Papillomavirus Rep 1992 3: 53–58

    Google Scholar 

  47. Frey JR, Wenk P . Experimental studies on the pathogenesis of contact eczema in the guinea-pig Int Arch Allergy 1957 11: 81–100

    CAS  PubMed  Google Scholar 

  48. Lafferty KJ, Woolnough J . The origin and mechanism of allograft rejection Immunol Rev 1997 35: 231–262

    Google Scholar 

  49. Oldstone MB, Nerenberg M, Southern P, Price J, Lewicki H . Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: role of anti-self (virus) immune response Cell 1991 65: 319–331

    CAS  PubMed  Google Scholar 

  50. Ludewig B, Odermatt B, Landmann S, Hengartner H, Zinkernagel RM . Dendritic cells induce autoimmune diabetes and maintain disease via de novo formation of local lymphoid tissue J Exp Med 1998 188: 1493–1501

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Miyawaki S, Nakamura Y, Suzuka H et al. A new mutation, aly, that induces a generalized lack of lymph nodes accompanied by immunodeficiency in mice Eur J Immunol 1994 24: 429–434

    CAS  PubMed  Google Scholar 

  52. Lakkis FG, Arakelov A, Konieczny BT, Inoue Y . Immunologic “ignorance” of vascularized organ transplants in the absence of secondary lymphoid tissue Nat Med 2000 6: 686–688

    CAS  PubMed  Google Scholar 

  53. Ochsenbein AF, Klenerman P, Karrer U et al. Immune surveillance against a peripheral solid tumor fails because of immunological ignorance Proc Natl Acad Sci USA 1999 96: 2233–2238

    CAS  PubMed  PubMed Central  Google Scholar 

  54. DeVita VT, Hellmann S, Rosenberg SA . In: DeVita VT, Hellmann S, Rosenberg SA, eds Cancer, Principles and Practice of Oncology Philadelphia, USA: Lippincott Raven 1998 Vol. 5:

    Google Scholar 

  55. Webb S, Morris C, Sprent J . Extrathymic tolerance of mature T cells: clonal elimination as a consequence of immunity Cell 1990 63: 1249–1256

    CAS  PubMed  Google Scholar 

  56. Moskophidis D, Lechner F, Pircher H, Zinkernagel RM . Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells Nature 1993 362: 758–761

    CAS  PubMed  Google Scholar 

  57. Staveley-O'Carrol K, Sotomayor E, Montgomery J et al. Induction of antigen-specific T cell anergy: an early event in the course of tumor progression Proc Natl Acad Sci USA 1998 95: 1178–1183

    Google Scholar 

  58. Bretscher P, Cohn M . A theory of self-nonself discrimination Science 1970 169: 1042–1049

    CAS  PubMed  Google Scholar 

  59. Lafferty KJ, Cunningham AJ . A new analysis of allogeneic interactions Aust J Exp Biol Med Sci 1975 53: 27–42

    CAS  PubMed  Google Scholar 

  60. Schwartz RH . A cell culture model for T lymphocyte clonal anergy Science 1990 248: 1349–1356

    CAS  PubMed  Google Scholar 

  61. Chen L, Ashe S, Brady WA et al. Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4 Cell 1992 71: 1093–1102

    CAS  PubMed  Google Scholar 

  62. Townsend SE, Allison JP . Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells Science 1993 259: 368–370

    CAS  PubMed  Google Scholar 

  63. Matzinger P . Tolerance, danger, and the extended family Annu Rev Immunol 1994 12: 991–1045

    CAS  PubMed  Google Scholar 

  64. Chambers CA, Allison JP . Co-stimulation in T cell responses Curr Opin Immunol 1997 9: 396–404

    CAS  PubMed  Google Scholar 

  65. Cella M, Scheidegger D, Palmer-Lehmann K, Lane P, Lanzavecchia A, Alber G . Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T–T help via APC activation J Exp Med 1996 184: 747–752

    CAS  PubMed  Google Scholar 

  66. Diehl L, Den BA, Schoenberger SP et al. CD40 activation in vivo overcomes peptide-induced peripheral cytotoxic T-lymphocyte tolerance and augments anti-tumor vaccine efficacy Nat Med 1999 5: 774–779

    CAS  PubMed  Google Scholar 

  67. Hintzen RQ, de JR, Lens SM, van LR . CD27: marker and mediator of T-cell activation? Immunol Today 1994 15: 307–311

    CAS  PubMed  Google Scholar 

  68. Watts TH, DeBenedette MA . T cell co-stimulatory molecules other than CD28 Curr Opin Immunol 1999 11: 286–293

    CAS  PubMed  Google Scholar 

  69. Smith KA . Interleukin 2 Annu Rev Immunol 1984 2: 319–333

    CAS  PubMed  Google Scholar 

  70. Shimizu Y, van SG, Horgan KJ, Shaw S . Roles of adhesion molecules in T-cell recognition: fundamental similarities between four integrins on resting human T cells (LFA-1, VLA-4, VLA-5, VLA-6) in expression, binding, and costimulation Immunol Rev 1990 114: 109–143

    CAS  PubMed  Google Scholar 

  71. Liebowitz DN, Lee KP, June CH . Costimulatory approaches to adoptive immunotherapy Curr Opin Oncol 1998 10: 533–541

    CAS  PubMed  Google Scholar 

  72. Hellstrom KE, Hellstrom I, Chen L . Can co-stimulated tumor immunity be therapeutically efficacious? Immunol Rev 1995 145: 123–145

    CAS  PubMed  Google Scholar 

  73. Melero I, Shuford WW, Newby SA et al. Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors Nat Med 1997 3: 682–685

    CAS  PubMed  Google Scholar 

  74. Shahinian A, Pfeffer K, Lee KP et al. Differential T cell costimulatory requirements in CD28-deficient mice Science 1993 261: 609–612

    CAS  PubMed  Google Scholar 

  75. Yang G, Mizuno MT, Hellstrom KE, Chen L . B7-negative versus B7-positive P815 tumor. Differential requirements for priming of an antitumor immune response in lymph nodes J Immunol 1997 158: 851–858

    CAS  PubMed  Google Scholar 

  76. Ramarathinam L, Castle M, Wu Y, Liu Y . T cell costimulation by B7/BB1 induces CD8 T cell–dependent tumor rejection: an important role of B7/BB1 in the induction, recruitment, and effector function of antitumor T cells J Exp Med 1994 179: 1205–1214

    CAS  PubMed  Google Scholar 

  77. Maric M, Zheng P, Sarma S, Guo Y, Liu Y . Maturation of cytotoxic T lymphocytes against a B7-transfected nonmetastatic tumor: a critical role for costimulation by B7 on both tumor and host antigen-presenting cells Cancer Res 1998 58: 3376–3384

    CAS  PubMed  Google Scholar 

  78. Chang TT, Jabs C, Sobel RA, Kuchroo VK, Sharpe AH . Studies in B7-deficient mice reveal a critical role for B7 costimulation in both induction and effector phase of experimental autoimmune encephalomyelitis J Exp Med 1999 190: 733–740

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Harlan DM, Hengartner H, Huang ML et al. Mice expressing both B7-1 and viral glycoprotein on pancreatic beta cells along with glycoprotein-specific transgenic T cells develop diabetes due to a breakdown of T-lymphocyte unresponsiveness Proc Natl Acad Sci USA 1994 91: 3137–3141

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Bevan MJ . Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay J Exp Med 1976 143: 1283–1288

    CAS  PubMed  Google Scholar 

  81. Carbone FR, Kurts C, Bennet SRM, Miller JFAP, Heath WR . Cross-presentation: a general mechanism for CTL immunity and tolerance Immunol Today 1998 19: 368–373

    CAS  PubMed  Google Scholar 

  82. Albert ML, Sauter B, Bhardwaj N . Dendritic cells acquire antigen from apoptotic cells and induce class I–restricted CTLs Nature 1998 392: 86–89

    CAS  PubMed  Google Scholar 

  83. Sigal LJ, Crotty S, Andino R, Rock KL . Cytotoxic T-cell immunity to virus-infected non-haematopoietic cells requires presentation of exogenous antigen Nature 1999 398: 77–80

    CAS  PubMed  Google Scholar 

  84. Heath WR, Carbone FR . Cross-presentation in viral immunity and self-tolerance Nat Rev Immunol 2001 1: 126–134

    CAS  PubMed  Google Scholar 

  85. Steinman RM, Turley S, Mellman I, Inaba K . The induction of tolerance by dendritic cells that have captured apoptotic cells J Exp Med 2000 191: 411–416

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Heath WR, Carbone FR . Cross-presentation, dendritic cells, tolerance and immunity Annu Rev Immunol 2001 19: 47–64

    CAS  PubMed  Google Scholar 

  87. Berard F, Blanco P, Davoust J et al. Cross-priming of naive CD8 T cells against melanoma antigens using dendritic cells loaded with killed allogeneic melanoma cells J Exp Med 2000 192: 1535–1544

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Shen Z, Reznikoff G, Dranoff G, Rock KL . Cloned dendritic cells can present exogenous antigens on both MHC class I and class II molecules J Immunol 1997 158: 2723–2730

    CAS  PubMed  Google Scholar 

  89. Kurts C, Miller JF, Subramaniam RM, Carbone FR, Heath WR . Major histocompatibility complex class I–restricted cross-presentation is biased towards high dose antigens and those released during cellular destruction J Exp Med 1998 188: 409–414

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Gordon RD, Mathieson BJ, Samelson LE, Boyse EA, Simpson E . The effect of allogeneic presensitization on H-Y graft survival and in vitro cell-mediated responses to H-Y antigen J Exp Med 1976 144: 810–820

    CAS  PubMed  Google Scholar 

  91. Matzinger P, Bevan MJ . Induction of H-2–restricted cytotoxic T cells: in vivo induction has the appearance of being unrestricted Cell Immunol 1977 33: 92–100

    CAS  PubMed  Google Scholar 

  92. Huang AY, Golumbek P, Ahmadzadeh M, Jaffee E, Pardoll D, Levitsky H . Role of bone marrow–derived cells in presenting MHC class I–restricted tumor antigens Science 1994 264: 961–965

    CAS  PubMed  Google Scholar 

  93. Toes RE, Ossendorp F, Offringa R, Melief CJ . CD4 T cells and their role in antitumor immune responses J Exp Med 1999 189: 753–756

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Kurts C, Heath WR, Carbone FR, Allison J, Miller JFAP, Kosaka H . Constitutive class I–restricted exogenous presentation of self antigens in vivo J Exp Med 1996 184: 923–930

    CAS  PubMed  Google Scholar 

  95. Shlomchik WD, Couzens MS, Tang CB et al. Prevention of graft versus host disease by inactivation of host antigen-presenting cells Science 1999 285: 412–415

    CAS  PubMed  Google Scholar 

  96. Pardoll DM . Spinning molecular immunology into successful immunotherapy Nat Rev Immunol 2002 2: 227–238

    CAS  PubMed  Google Scholar 

  97. Smyth MJ, Godfrey DI, Trapani JA . A fresh look at tumor immunosurveillance and immunotherapy Nat Immunol 2001 2: 293–299

    CAS  PubMed  Google Scholar 

  98. Riddell SR, Greenberg PD . Principles for adoptive T cell therapy of human viral diseases Annu Rev Immunol 1995 13: 545–586

    CAS  PubMed  Google Scholar 

  99. Nestle FO, Banchereau J, Hart D . Dendritic cells: on the move from bench to bedside Nat Med 2001 7: 761–764

    CAS  PubMed  Google Scholar 

  100. Jager E, Gnjatic S, Nagata Y et al. Induction of primary NY-ESO-1 immunity: CD8+ T lymphocyte and antibody responses in peptide-vaccinated patients with NY-ESO-1+ cancers Proc Natl Acad Sci 2000 97: 12198–12203

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Parmiani G, Castelli C, Dalerba P et al. Cancer immunotherapy with peptide-based vaccines: what have we achieved? Where are we going? J Natl Cancer Inst 2002 94: 805–818

    CAS  PubMed  Google Scholar 

  102. Coulie PG, Karanikas V, Colau D et al. A monoclonal cytolytic T-lymphocyte response observed in a melanoma patient vaccinated with a tumor-specific antigenic peptide encoded by gene MAGE-3 Proc Natl Acad Sci USA 2001 98: 10290–10295

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Reyes-Sandoval A, Ertl HC . DNA vaccines Curr Mol Med 2001 1: 217–243

    CAS  PubMed  Google Scholar 

  104. Maloy KJ, Erdmann I, Basch V et al. Intralymphatic immunization enhances DNA vaccination Proc Natl Acad Sci USA 2001 98: 3299–3303

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Marchand M, van BN, Weynants P et al. Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by gene MAGE-3 and presented by HLA-A1 Int J Cancer 1999 80: 219–230

    CAS  PubMed  Google Scholar 

  106. Ramshaw IA, Ramsay AJ . The prime–boost strategy: exciting prospects for improved vaccination Immunol Today 2000 21: 163–165

    CAS  PubMed  Google Scholar 

  107. Ludewig B, Ochsenbein AF, Odermatt B, Paulin D, Hengartner H, Zinkernagel RM . Immunotherapies with dendritic cells directed against tumor antigens shared with normal host cells results in severe autoimmune disease J Exp Med 2000 191: 795–804

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Speiser DE, Miranda R, Zakarian A et al. Self antigens expressed by solid tumors do not efficiently stimulate naive or activated T cells: implications for immunotherapy J Exp Med 1997 186: 645–653

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Kim JJ, Bagarazzi ML, Trivedi N et al. Engineering of in vivo immune responses to DNA immunization via codelivery of costimulatory molecule genes Nat Biotechnol 1997 15: 641–646

    CAS  PubMed  Google Scholar 

  110. Weinberg AD, Rivera MM, Prell R et al. Engagement of the OX-40 receptor in vivo enhances antitumor immunity J Immunol 2000 164: 2160–2169

    CAS  PubMed  Google Scholar 

  111. Bansal-Pakala P, Jember AG, Croft M . Signaling through OX40 (CD134) breaks peripheral T-cell tolerance Nat Med 2001 7: 907–912

    CAS  PubMed  Google Scholar 

  112. Chen W, Carbone FR, McCluskey J . Electroporation and commercial liposomes efficiently deliver soluble protein into the MHC class I presentation pathway. Priming in vitro and in vivo for class I–restricted recognition of soluble antigen J Immunol Methods 1993 160: 49–57

    CAS  PubMed  Google Scholar 

  113. Nakanishi T, Hayashi A, Kunisawa J et al. Fusogenic liposomes efficiently deliver exogenous antigen through the cytoplasm into the MHC class I processing pathway Eur J Immunol 2000 30: 1740–1747

    CAS  PubMed  Google Scholar 

  114. Mandal M, Lee KD . Listeriolysin O-liposome–mediated cytosolic delivery of macromolecule antigen in vivo: enhancement of antigen-specific cytotoxic T lymphocyte frequency, activity, and tumor protection Biochim Biophys Acta 2002 1563: 7–17

    CAS  PubMed  Google Scholar 

  115. Binder RJ, Han DK, Srivastava PK . CD91: a receptor for heat shock protein gp96 Nat Immunol 2000 1: 151–155

    CAS  PubMed  Google Scholar 

  116. Schild H, Arnold-Schild D, Lammert E, Rammensee HG . Stress proteins and immunity mediated by cytotoxic T lymphocytes Curr Opin Immunol 1999 11: 109–113

    CAS  PubMed  Google Scholar 

  117. Jeannin P, Renno T, Goetsch L et al. OmpA targets dendritic cells, induces their maturation and delivers antigen into the MHC class I presentation pathway Nat Immunol 2000 1: 502–509

    CAS  PubMed  Google Scholar 

  118. Carroll MW, Overwijk WW, Chamberlain RS, Rosenberg SA, Moss B, Restifo NP . Highly attenuated modified vaccinia virus Ankara (MVA) as an effective recombinant vector: a murine tumor model Vaccine 1997 15: 387–394

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Elzey BD, Siemens DR, Ratliff TL, Lubaroff DM . Immunization with type 5 adenovirus recombinant for a tumor antigen in combination with recombinant canarypox virus (ALVAC) cytokine gene delivery induces destruction of established prostate tumors Int J Cancer 2001 94: 842–849

    CAS  PubMed  Google Scholar 

  120. Velders MP, McElhiney S, Cassetti MC et al. Eradication of established tumors by vaccination with Venezuelan equine encephalitis virus replicon particles delivering human papillomavirus 16 E7 RNA Cancer Res 2001 61: 7861–7867

    CAS  PubMed  Google Scholar 

  121. Ada G . Vaccines and vaccination N Engl J Med 2001 345: 1042–1053

    CAS  PubMed  Google Scholar 

  122. Irvine KR, Chamberlain RS, Shulman EP, Surman DR, Rosenberg SA, Restifo NP . Enhancing efficacy of recombinant anticancer vaccines with prime/boost regimens that use two different vectors J Natl Cancer Inst 1997 89: 1595–1601

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank Rolf Zinkernagel and William Ho for critically reading the manuscript. A F O was supported by the Swiss National Science Foundation (Grant 1078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian F Ochsenbein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ochsenbein, A. Principles of tumor immunosurveillance and implications for immunotherapy. Cancer Gene Ther 9, 1043–1055 (2002). https://doi.org/10.1038/sj.cgt.7700540

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700540

Keywords

This article is cited by

Search

Quick links