Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Nucleoside analogues: mechanisms of drug resistance and reversal strategies

Abstract

Nucleoside analogues (NA) are essential components of AML induction therapy (cytosine arabinoside), effective treatments of lymphoproliferative disorders (fludarabine, cladribine) and are also used in the treatment of some solid tumors (gemcitabine). These important compounds share some general common characteristics, namely in terms of requiring transport by specific membrane transporters, metabolism and interaction with intracellular targets. However, these compounds differ in regard to the types of transporters that most efficiently transport a given compound, and their preferential interaction with certain targets which may explain why some compounds are more effective against rapidly proliferating tumors and others on neoplasia with a more protracted evolution. In this review, we analyze the available data concerning mechanisms of action of and resistance to NA, with particular emphasis on recent advances in the characterization of nucleoside transporters and on the potential role of activating or inactivating enzymes in the induction of clinical resistance to these compounds. We performed an extensive search of published in vitro and clinical data in which the levels of expression of nucleoside-activating or inactivating enzymes have been correlated with tumor response or patient outcome. Strategies aiming to increase the intracellular concentrations of active compounds are presented.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Cheson BD . New antimetabolites in the treatment of human malignancies Semin Oncol 1992 19: 695–706

    CAS  PubMed  Google Scholar 

  2. Rustum YM, Raymakers RA . 1-Beta-arabinofuranosylcytosine in therapy of leukemia: preclinical and clinical overview Pharmacol Ther 1992 56: 307–321

    CAS  PubMed  Google Scholar 

  3. Burris HA III, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, Cripps MC, Portenoy RK, Storniolo AM, Tarassoff P, Nelson R, Dorr FA, Stephens CD, Von Hoff DD . Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial J Clin Oncol 1997 15: 2403–2413

    PubMed  Google Scholar 

  4. Kaye SB . Gemcitabine: current status of phase I and II trials (editorial) J Clin Oncol 1994 12: 1527–1531

    CAS  PubMed  Google Scholar 

  5. Bryson HM, Sorkin EM . Cladribine. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in haematological malignancies Drugs 1993 46: 872–894

    CAS  PubMed  Google Scholar 

  6. Robertson LE, Huh YO, Butler JJ, Pugh WC, Hirsch-Ginsberg C, Stass S, Kantarjian H, Keating MJ . Response assessment in chronic lymphocytic leukemia after fludarabine plus prednisone: clinical, pathologic, immunophenotypic, and molecular analysis Blood 1992 80: 29–36

    CAS  PubMed  Google Scholar 

  7. Ross SR, McTavish D, Faulds D . Fludarabine. A review of its pharmacological properties and therapeutic potential in malignancy Drugs 1993 45: 737–759

    CAS  PubMed  Google Scholar 

  8. Juliusson G, Liliemark J . Long-term survival following cladribine (2-chlorodeoxyadenosine) therapy in previously treated patients with chronic lymphocytic leukemia Ann Oncol 1996 7: 373–379

    CAS  PubMed  Google Scholar 

  9. Sorensen JM, Vena DA, Fallavollita A, Chun HG, Cheson BD . Treatment of refractory chronic lymphocytic leukemia with fludarabine phosphate via the group C protocol mechanism of the National Cancer Institute: five-year follow-up report J Clin Oncol 1997 15: 458–465

    CAS  PubMed  Google Scholar 

  10. Boleti H, Coe IR, Baldwin SA, Young JD, Cass CE . Molecular identification of the equilibrative NBMPR-sensitive (es) nucleoside transporter and demonstration of an equilibrative NBMPR-insensitive (ei) transport activity in human erythroleukemia (K562) cells Neuropharmacology 1997 36: 1167–1179

    CAS  PubMed  Google Scholar 

  11. Baldwin SA, Mackey JR, Cass CE, Young JD . Nucleoside transporters: molecular biology and implications for therapeutic development Mol Med Today 1999 5: 216–224

    CAS  PubMed  Google Scholar 

  12. Crawford CR, Patel DH, Naeve C, Belt JA . Cloning of the human equilibrative, nitrobenzylmercaptopurine riboside (NBMPR)-insensitive nucleoside transporter ei by functional expression in a transport-deficient cell line J Biol Chem 1998 273: 5288–5293

    CAS  PubMed  Google Scholar 

  13. Griffiths M, Beaumont N, Yao SY, Sundaram M, Boumah CE, Davies A, Kwong FY, Coe I, Cass CE, Young JD, Baldwin SA . Cloning of a human nucleoside transporter implicated in the cellular uptake of adenosine and chemotherapeutic drugs Nat Med 1997 3: 89–93

    CAS  PubMed  Google Scholar 

  14. Griffiths M, Yao SY, Abidi F, Phillips SE, Cass CE, Young JD, Baldwin SA . Molecular cloning and characterization of a nitrobenzylthioinosine-insensitive (ei) equilibrative nucleoside transporter from human placenta Biochem J 1997 328: 739–743

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Crawford CR, Ng CY, Noel LD, Belt JA . Nucleoside transport in L1210 murine leukemia cells. Evidence for three transporters J Biol Chem 1990 265: 9732–9736

    CAS  PubMed  Google Scholar 

  16. Belt JA, Marina NM, Phelps DA, Crawford CR . Nucleoside transport in normal and neoplastic cells Adv Enzyme Regul 1993 33: 235–252

    CAS  PubMed  Google Scholar 

  17. Graham KA, Leithoff J, Coe IR, Mowles D, Mackey JR, Young JD, Cass CE . Differential transport of cytosine-containing nucleosides by recombinant human concentrative nucleoside transporter protein hCNT1 Nucleosides Nucleotides Nucleic Acids 2000 19: 415–434

    CAS  PubMed  Google Scholar 

  18. Schaner ME, Wang J, Zhang L, Su SF, Gerstin KM, Giacomini KM . Functional characterization of a human purine-selective, Na+-dependent nucleoside transporter (hSPNT1) in a mammalian expression system J Pharmacol Exp Ther 1999 289: 1487–1491

    CAS  PubMed  Google Scholar 

  19. Kufe DW, Weichselbaum R, Egan EM, Dahlberg W, Fram RJ . Lethal effects of 1-beta-D-arabinofuranosylcytosine incorporation into deoxyribonucleic acid during ultraviolet repair Mol Pharmacol 1984 25: 322–326

    CAS  PubMed  Google Scholar 

  20. Sandoval A, Consoli U, Plunkett W . Fludarabine-mediated inhibition of nucleotide excision repair induces apoptosis in quiescent human lymphocytes Clin Cancer Res 1996 2: 1731–1741

    CAS  PubMed  Google Scholar 

  21. Nicander B, Reichard P . Relations between synthesis of deoxyribonucleotides and DNA replication in 3T6 fibroblasts J Biol Chem 1985 260: 5376–5381

    CAS  PubMed  Google Scholar 

  22. Xu YZ, Huang P, Plunkett W . Functional compartmentation of dCTP pools. Preferential utilization of salvaged deoxycytidine for DNA repair in human lymphoblasts J Biol Chem 1995 270: 631–637

    CAS  PubMed  Google Scholar 

  23. Shrecker AW, Urshel MJ . Metabolism of 1-beta-D-arabinofuranosylcytosine in leukemia L1210: studies with intact cells Cancer Res 1968 28: 793–801

    CAS  PubMed  Google Scholar 

  24. Plagemann PG, Marz R, Wohlhueter RM . Transport and metabolism of deoxycytidine and 1-beta-D-arabinofuranosylcytosine into cultured Novikoff rat hepatoma cells, relationship to phosphorylation, and regulation of triphosphate synthesis Cancer Res 1978 38: 978–989

    CAS  PubMed  Google Scholar 

  25. Capizzi RL, Yang JL, Rathmell JP, White JC, Cheng E, Cheng YC, Kute T . Dose-related pharmacologic effects of high-dose ara-C and its self-potentiation Semin Oncol 1985 12: 65–74

    CAS  PubMed  Google Scholar 

  26. Wiley JS, Taupin J, Jamieson GP, Snook M, Sawyer WH, Finch LR . Cytosine arabinoside transport and metabolism in acute leukemias and T cell lymphoblastic lymphoma J Clin Invest 1985 75: 632–642

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Weinstein HJ, Griffin TW, Feeney J, Cohen HJ, Propper RD, Sallan SE . Pharmacokinetics of continuous intravenous and subcutaneous infusions of cytosine arabinoside Blood 1982 59: 1351–1353

    CAS  PubMed  Google Scholar 

  28. Ho DH, Frei E . Clinical pharmacology of 1-beta-d-arabinofuranosyl cytosine Clin Pharmacol Ther 1971 12: 944–954

    CAS  PubMed  Google Scholar 

  29. Capizzi RL, Yang JL, Cheng E, Bjornsson T, Sahasrabudhe D, Tan RS, Cheng YC . Alteration of the pharmacokinetics of high-dose ara-C by its metabolite, high ara-U in patients with acute leukemia J Clin Oncol 1983 1: 763–771

    CAS  PubMed  Google Scholar 

  30. Plunkett W, Liliemark JO, Estey E, Keating MJ . Saturation of ara-CTP accumulation during high-dose ara-C therapy: pharmacologic rationale for intermediate-dose ara-C Semin Oncol 1987 14: 159–166

    CAS  PubMed  Google Scholar 

  31. Liliemark JO, Plunkett W, Dixon DO . Relationship of 1-beta-D-arabinofuranosylcytosine in plasma to 1-beta-D-arabinofuranosylcytosine 5′-triphosphate levels in leukemic cells during treatment with high-dose 1-beta-D-arabinofuranosylcytosine Cancer Res 1985 45: 5952–5957

    CAS  PubMed  Google Scholar 

  32. Dumontet C, Fabianowska-Majewska K, Mantincic D, Callet Bauchu E, Tigaud I, Gandhi V, Lepoivre M, Peters GJ, Rolland MO, Wyczechowska D, Fang X, Gazzo S, Voorn DA, Vanier-Viornery A, Mackey JR . Common resistance mechanisms to deoxynucleoside analogues in variants of the human erythroleukaemic line K562 Br J Haematol 1999 106: 78–85

    CAS  PubMed  Google Scholar 

  33. Major PP, Egan EM, Beardsley GP, Minden MD, Kufe DW . Lethality of human myeloblasts correlates with the incorporation of arabinofuranosylcytosine into DNA Proc Natl Acad Sci USA 1981 78: 3235–3239

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Major PP, Egan EM, Herrick DJ, Kufe DW . Effect of ARA-C incorporation on deoxyribonucleic acid synthesis in cells Biochem Pharmacol 1982 31: 2937–2940

    CAS  PubMed  Google Scholar 

  35. Kufe DW, Major PP, Egan EM, Beardsley GP . Correlation of cytotoxicity with incorporation of ara-C into DNA J Biol Chem 1980 255: 8997–8900

    CAS  PubMed  Google Scholar 

  36. Gunji H, Kharbanda S, Kufe D . Induction of internucleosomal DNA fragmentation in human myeloid leukemia cells by 1-beta-D-arabinofuranosylcytosine Cancer Res 1991 51: 741–743

    CAS  PubMed  Google Scholar 

  37. Raza A, Gezer S, Anderson J, Lykins J, Bennett J, Browman G, Goldberg J, Larson R, Vogler R, Preisler HD . Relationship of [3H]Ara-C incorporation and response to therapy with high-dose Ara-C in AML patients: a Leukemia Intergroup study Exp Hematol 1992 20: 1194–1200

    CAS  PubMed  Google Scholar 

  38. Estey E, Plunkett W, Dixon D, Keating M, McCredie K, Freireich EJ . Variables predicting response to high dose cytosine arabinoside therapy in patients with refractory acute leukemia Leukemia 1987 1: 580–583

    CAS  PubMed  Google Scholar 

  39. Kaye SB . New antimetabolites in cancer chemotherapy and their clinical impact Br J Cancer 1998 78: 1–7

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Possinger K . Gemcitabine in advanced breast cancer Anticancer Drugs 1995 6 (Suppl. 6): 55–59

    Google Scholar 

  41. Baker CH, Banzon J, Bollinger JM, Stubbe J, Samano V, Robins MJ, Lippert B, Jarvi E, Resvick R . 2′-Deoxy-2′-methylenecytidine and 2′-deoxy-2′,2′-difluorocytidine 5′-diphosphates: potent mechanism-based inhibitors of ribonucleotide reductase J Med Chem 1991 34: 1879–1884

    CAS  PubMed  Google Scholar 

  42. Abbruzzese JL, Grunewald R, Weeks EA, Gravel D, Adams T, Nowak B, Mineishi S, Tarassoff P, Satterlee W, Raber MN et al. A phase I clinical, plasma, and cellular pharmacology study of gemcitabine J Clin Oncol 1991 9: 491–498

    CAS  PubMed  Google Scholar 

  43. Plunkett W, Huang P, Xu YZ, Heinemann V, Grunewald R, Gandhi V . Gemcitabine: metabolism, mechanisms of action, and self-potentiation Semin Oncol 1995 22: 3–10

    CAS  PubMed  Google Scholar 

  44. Neff T, Blau CA . Forced expression of cytidine deaminase confers resistance to cytosine arabinoside and gemcitabine Exp Hematol 1996 24: 1340–1346

    CAS  PubMed  Google Scholar 

  45. Schirmer M, Stegmann AP, Geisen F, Konwalinka G . Lack of cross-resistance with gemcitabine and cytarabine in cladribine-resistant HL60 cells with elevated 5′-nucleotidase activity Exp Hematol 1998 26: 1223–1228

    CAS  PubMed  Google Scholar 

  46. Huang P, Chubb S, Hertel LW, Grindey GB, Plunkett W . Action of 2′,2′-difluorodeoxycytidine on DNA synthesis Cancer Res 1991 51: 6110–6117

    CAS  PubMed  Google Scholar 

  47. Huang P, Plunkett W . Induction of apoptosis by gemcitabine Semin Oncol 1995 22: 19–25

    PubMed  Google Scholar 

  48. Plunkett W, Huang P, Gandhi V . Preclinical characteristics of gemcitabine Anticancer Drugs 1995 6 (Suppl. 6): 7–13

    Google Scholar 

  49. Ruiz van Haperen VW, Veerman G, Vermorken JB, Peters GJ . 2′,2′-Difluoro-deoxycytidine (gemcitabine) incorporation into RNA and DNA of tumour cell lines Biochem Pharmacol 1993 46: 762–766

    CAS  PubMed  Google Scholar 

  50. Cartei G, Sacco C, Sibau A, Pella N, Iop A, Tabaro G . Cisplatin and gemcitabine in non-small-cell lung cancer Ann Oncol 1999 10: S57–S62

    PubMed  Google Scholar 

  51. Hoffman MA, Janson D, Rose E, Rai KR . Treatment of hairy-cell leukemia with cladribine: response, toxicity, and long-term follow-up J Clin Oncol 1997 15: 1138–1142

    CAS  PubMed  Google Scholar 

  52. Jehn U, Bartl R, Dietzfelbinger H, Vehling-Kaiser U, Wolf-Hornung B, Hill W, Heinemann V . Long-term outcome of hairy cell leukemia treated with 2-chlorodeoxyadenosine Ann Hematol 1999 78: 139–144

    CAS  PubMed  Google Scholar 

  53. Lauria F, Rondelli D, Zinzani PL, Bocchia M, Marotta G, Salvucci M, Raspadori D, Ventura MA, Birtolo S, Forconi F, Tura S . Long-lasting complete remission in patients with hairy cell leukemia treated with 2-CdA: a 5-year survey Leukemia 1997 11: 629–632

    CAS  PubMed  Google Scholar 

  54. King KM . Membrane transport of 2′-chloro-2′-deoxyadenosine and 2-chloro-2′arabinofluoro-2′-deoxyadenosine is required for cytotoxicity Proc Am Assoc Cancer Res 1994 35: A3436

    Google Scholar 

  55. Wang L, Karlsson A, Arner ES, Eriksson S . Substrate specificity of mitochondrial 2′-deoxyguanosine kinase. Efficient phosphorylation of 2-chlorodeoxyadenosine J Biol Chem 1993 268: 22847–22852

    CAS  PubMed  Google Scholar 

  56. Carson DA, Kaye J, Wasson DB . The potential importance of soluble deoxynucleotidase activity in mediating deoxyadenosine toxicity in human lymphoblasts J Immunol 1981 126: 348–352

    CAS  PubMed  Google Scholar 

  57. Seto S, Carrera CJ, Kubota M, Wasson DB, Carson DA . Mechanism of deoxyadenosine and 2-chlorodeoxyadenosine toxicity to nondividing human lymphocytes J Clin Invest 1985 75: 377–383

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Carson DA, Wasson DB, Taetle R, Yu A . Specific toxicity of 2-chlorodeoxyadenosine toward resting and proliferating human lymphocytes Blood 1983 62: 737–743

    CAS  PubMed  Google Scholar 

  59. Griffig J, Koob R, Blakley RL . Mechanisms of inhibition of DNA synthesis by 2-chlorodeoxyadenosine in human lymphoblastic cells Cancer Res 1989 49: 6923–6928

    CAS  PubMed  Google Scholar 

  60. Hentosh P, Koob R, Blakley RL . Incorporation of 2-halogeno-2′-deoxyadenosine 5-triphosphates into DNA during replication by human polymerases alpha and beta J Biol Chem 1990 265: 4033–4040

    CAS  PubMed  Google Scholar 

  61. Lassota P, Kazimierczuk Z, Darzynkiewicz Z . Apoptotic death of lymphocytes upon treatment with 2-chloro-2′-deoxyadenosine (2-CdA) Arch Immunol Ther Exp 1994 42: 17–23

    CAS  Google Scholar 

  62. Parker WB, Bapat AR, Shen JX, Townsend AJ, Cheng YC . Interaction of 2-halogenated dATP analogs (F, Cl, and Br) with human DNA polymerases, DNA primase, and ribonucleotide reductase Mol Pharmacol 1988 34: 485–491

    CAS  PubMed  Google Scholar 

  63. Plunkett W, Huang P, Gandhi V . Metabolism and action of fludarabine phosphate Semin Oncol 1990 17: 3–17

    CAS  PubMed  Google Scholar 

  64. Fabianowska-Majewska K, Wasiak TJ, Warzocha K, Marlewski M, Fairbanks L, Smolenski RT, Duley J, Simmonds A . A new mechanism of toxicity of 2-chlorodeoxyadenosine (2CdA) Adv Exp Med Biol 1994 370: 125–128

    CAS  PubMed  Google Scholar 

  65. Abeles RH, Tashjian AH Jr, Fish S . The mechanism of inactivation of S-adenosylhomocysteinase by 2′-deoxyadenosine Biochem Biophys Res Commun 1980 95: 612–617

    CAS  PubMed  Google Scholar 

  66. Wolos JA, Frondorf KA, Davis GF, Jarvi ET, McCarthy JR, Bowlin TL . Selective inhibition of T cell activation by an inhibitor of S-adenosyl- L-homocysteine hydrolase J Immunol 1993 150: 3264–3273

    CAS  PubMed  Google Scholar 

  67. Pettitt AR, Clarke AR, Cawley JC, Griffiths SD . Purine analogues kill resting lymphocytes by p53-dependent and -independent mechanisms Br J Haematol 1999 105: 986–988

    CAS  PubMed  Google Scholar 

  68. Pettitt AR, Sherrington PD, Cawley JC . The effect of p53 dysfunction on purine analogue cytotoxicity in chronic lymphocytic leukaemia Br J Haematol 1999 106: 1049–1051

    CAS  PubMed  Google Scholar 

  69. Genini D, Adachi S, Chao Q, Rose DW, Carrera CJ, Cottam HB, Carson DA, Leoni LM . Deoxyadenosine analogs induce programmed cell death in chronic lymphocytic leukemia cells by damaging the DNA and by directly affecting the mitochondria Blood 2000 96: 3537–3543

    CAS  PubMed  Google Scholar 

  70. Hentosh P, Tibudan M . In vitro transcription of DNA containing 2-chloro-2′-deoxyadenosine monophosphate Mol Pharmacol 1995 48: 897–904

    CAS  PubMed  Google Scholar 

  71. Genini D, Budihardjo I, Plunkett W, Wang X, Carrera CJ, Cottam HB, Carson DA, Leoni LM . Nucleotide requirements for the in vitro activation of the apoptosis protein-activating factor-1-mediated caspase pathway J Biol Chem 2000 275: 29–34

    CAS  PubMed  Google Scholar 

  72. Leoni LM, Chao Q, Cottam HB, Genini D, Rosenbach M, Carrera CJ, Budihardjo I, Wang X, Carson DA . Induction of an apoptotic program in cell-free extracts by 2-chloro-2′-deoxyadenosine 5′-triphosphate and cytochrome c Proc Natl Acad Sci USA 1998 95: 9567–9571

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Hentosh P, Tibudan M . 2-Chloro-2′-deoxyadenosine, an antileukemic drug, has an early effect on cellular mitochondrial function Mol Pharmacol 1997 51: 613–619

    CAS  PubMed  Google Scholar 

  74. Enriquez JA, Fernandez-Silva P, Perez-Martos A, Lopez-Perez MJ, Montoya J . The synthesis of mRNA in isolated mitochondria can be maintained for several hours and is inhibited by high levels of ATP Eur J Biochem 1996 237: 601–610

    CAS  PubMed  Google Scholar 

  75. de Murcia G, Menissier de Murcia J . Poly(ADP-ribose) polymerase: a molecular nick-sensor (published erratum appears in Trends Biochem Sci 1994; 19: 250) Trends Biochem Sci 1994 19: 172–176

    CAS  PubMed  Google Scholar 

  76. D'Amours D, Desnoyers S, D'Silva I, Poirier GG . Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions Biochem J 1999 342: 249–268

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Althaus FR, Richter C . ADP-ribosylation of proteins. Enzymology and biological significance Mol Biol Biochem Biophys 1987 37: 1–237

    CAS  PubMed  Google Scholar 

  78. Carson DA, Carrera CJ, Wasson DB, Yamanaka H . Programmed cell death and adenine deoxynucleotide metabolism in human lymphocytes Adv Enzyme Regul 1988 27: 395–404

    CAS  PubMed  Google Scholar 

  79. Zamzami N, Marchetti P, Castedo M, Decaudin D, Macho A, Hirsch T, Susin SA, Petit PX, Mignotte B, Kroemer G . Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death J Exp Med 1995 182: 367–377

    CAS  PubMed  Google Scholar 

  80. Brockman RW, Schabel FM Jr, Montgomery JA . Biologic activity of 9-beta-D-arabinofuranosyl-2-fluoroadenine, a metabolically stable analog of 9-beta-D-arabinofuranosyladenine Biochem Pharmacol 1977 26: 2193–2196

    CAS  PubMed  Google Scholar 

  81. Mackey JR, Baldwin SA, Young JD, Cass CE . The role of nucleoside transport in anticancer drug resistance Drug Resistance Updates 1998 1: 310–324

    CAS  PubMed  Google Scholar 

  82. Plunkett W, Gandhi V, Huang P, Robertson LE, Yang LY, Gregoire V, Estey E, Keating MJ . Fludarabine: pharmacokinetics, mechanisms of action, and rationales for combination therapies Semin Oncol 1993 20: 2–12

    CAS  PubMed  Google Scholar 

  83. Plunkett W, Saunders PP . Metabolism and action of purine nucleoside analogs Pharmacol Ther 1991 49: 239–268

    CAS  PubMed  Google Scholar 

  84. Tseng WC, Derse D, Cheng YC, Brockman RW, Bennett LL Jr . In vitro biological activity of 9-beta-D-arabinofuranosyl-2-fluoroadenine and the biochemical actions of its triphosphate on DNA polymerases and ribonucleotide reductase from HeLa cells Mol Pharmacol 1982 21: 474–477

    CAS  PubMed  Google Scholar 

  85. Huang P, Chubb S, Plunkett W . Termination of DNA synthesis by 9-beta-D-arabinofuranosyl-2-fluoroadenine. A mechanism for cytotoxicity J Biol Chem 1990 265: 16617–16625

    CAS  PubMed  Google Scholar 

  86. Gandhi V, Plunkett W . Modulation of arabinosylnucleoside metabolism by arabinosylnucleotides in human leukemia cells Cancer Res 1988 48: 329–334

    CAS  PubMed  Google Scholar 

  87. Consoli U, El-Tounsi I, Sandoval A, Snell V, Kleine HD, Brown W, Robinson JR, DiRaimondo F, Plunkett W, Andreeff M . Differential induction of apoptosis by fludarabine monophosphate in leukemic B and normal T cells in chronic lymphocytic leukemia Blood 1998 91: 1742–1748

    CAS  PubMed  Google Scholar 

  88. Pettitt AR, Sherrington PD, Cawley JC . Role of poly(ADP-ribosyl)ation in the killing of chronic lymphocytic leukemia cells by purine analogues Cancer Res 2000 60: 4187–4193

    CAS  PubMed  Google Scholar 

  89. Huang P, Plunkett W . Action of 9-beta-D-arabinofuranosyl-2-fluoroadenine on RNA metabolism Mol Pharmacol 1991 39: 449–455

    CAS  PubMed  Google Scholar 

  90. Huang P, Sandoval A, Van Den Neste E, Keating MJ, Plunkett W . Inhibition of RNA transcription: a biochemical mechanism of action against chronic lymphocytic leukemia cells by fludarabine Leukemia 2000 14: 1405–1413

    CAS  PubMed  Google Scholar 

  91. Gottardi D, De Leo AM, Alfarano A, Stacchini A, Circosta P, Gregoretti MG, Bergui L, Aragno M, Caligaris-Cappio F . Fludarabine ability to down-regulate Bcl-2 gene product in CD5+ leukaemic B cells: in vitro/in vivo correlations Br J Haematol 1997 99: 147–157

    CAS  PubMed  Google Scholar 

  92. Sjoberg AH, Wang L, Eriksson S . Substrate specificity of human recombinant mitochondrial deoxyguanosine kinase with cytostatic and antiviral purine and pyrimidine analogs Mol Pharmacol 1998 53: 270–273

    CAS  PubMed  Google Scholar 

  93. Galmarini CM, Thomas X, Calvo F, Rousselot P, Dumontet C . Mechanisms of resistance to cytarabine in relapsing acute myeloid leukemia (AML) patients Blood 1999 94: 1249A

    Google Scholar 

  94. White JC, Rathmell JP, Capizzi RL . Membrane transport influences the rate of accumulation of cytosine arabinoside in human leukemia cells J Clin Invest 1987 79: 380–387

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Mackey JR, Mani RS, Selner M, Mowles D, Young JD, Belt JA, Crawford CR, Cass CE . Functional nucleoside transporters are required for gemcitabine influx and manifestation of toxicity in cancer cell lines Cancer Res 1998 58: 4349–4357

    CAS  PubMed  Google Scholar 

  96. Gati WP, Paterson AR, Larratt LM, Turner AR, Belch AR . Sensitivity of acute leukemia cells to cytarabine is a correlate of cellular es nucleoside transporter site content measured by flow cytometry with SAENTA-fluorescein Blood 1997 90: 346–353

    CAS  PubMed  Google Scholar 

  97. Gati WP, Paterson AR, Belch AR, Chlumecky V, Larratt LM, Mant MJ, Turner AR . Es nucleoside transporter content of acute leukemia cells: role in cell sensitivity to cytarabine (araC) Leuk Lymphoma 1998 32: 45–54

    CAS  PubMed  Google Scholar 

  98. Wiley JS, Jones SP, Sawyer WH, Paterson AR . Cytosine arabinoside influx and nucleoside transport sites in acute leukemia J Clin Invest 1982 69: 479–489

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Coleman CN, Stoller RG, Drake JC, Chabner BA . Deoxycytidine kinase: properties of the enzyme from human leukemic granulocytes Blood 1975 46: 791–803

    CAS  PubMed  Google Scholar 

  100. Carson DA, Wasson DB, Kaye J, Ullman B, Martin DW Jr, Robins RK, Montgomery JA . Deoxycytidine kinase-mediated toxicity of deoxyadenosine analogs toward malignant human lymphoblasts in vitro and toward murine L1210 leukemia in vivo Proc Natl Acad Sci USA 1980 77: 6865–6869

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Heinemann V, Hertel LW, Grindey GB, Plunkett W . Comparison of the cellular pharmacokinetics and toxicity of 2′,2′-difluorodeoxycytidine and 1-beta-D-arabinofuranosylcytosine Cancer Res 1988 48: 4024–4031

    CAS  PubMed  Google Scholar 

  102. Wan CW, Mak TW . Deoxycytidine kinase and cytosine nucleoside deaminase activities in synchronized cultures of normal rat kidney cells Cancer Res 1978 38: 2768–2772

    CAS  PubMed  Google Scholar 

  103. Arner ES, Flygar M, Bohman C, Wallstrom B, Eriksson S . Deoxycytidine kinase is constitutively expressed in human lymphocytes: consequences for compartmentation effects, unscheduled DNA synthesis, and viral replication in resting cells Exp Cell Res 1988 178: 335–342

    CAS  PubMed  Google Scholar 

  104. Terai C, Wasson DB, Carrera CJ, Carson DA . Dependence of cell survival on DNA repair in human mononuclear phagocytes J Immunol 1991 147: 4302–4306

    CAS  PubMed  Google Scholar 

  105. Hengstschlager M, Denk C, Wawra E . Cell cycle regulation of deoxycytidine kinase. Evidence for post-transcriptional control FEBS Lett 1993 321: 237–240

    CAS  PubMed  Google Scholar 

  106. Verhoef V, Sarup J, Fridland A . Identification of the mechanism of activation of 9-beta-D-arabinofuranosyladenine in human lymphoid cells using mutants deficient in nucleoside kinases Cancer Res 1981 41: 4478–4483

    CAS  PubMed  Google Scholar 

  107. Bhalla K, Nayak R, Grant S . Isolation and characterization of a deoxycytidine kinase-deficient human promyelocytic leukemic cell line highly resistant to 1-beta-D-arabinofuranosylcytosine Cancer Res 1984 44: 5029–5037

    CAS  PubMed  Google Scholar 

  108. Stegmann AP, Honders MW, Kester MG, Landegent JE, Willemze R . Role of deoxycytidine kinase in an in vitro model for AraC- and DAC-resistance: substrate-enzyme interactions with deoxycytidine, 1-beta-D-arabinofuranosylcytosine and 5-aza-2′-deoxycytidine Leukemia 1993 7: 1005–1011

    CAS  PubMed  Google Scholar 

  109. Dumontet C, Fabianowska-Majewska K, Mantincic D, Callet Bauchu E, Tigaud I, Gandhi V, Lepoivre M, Peters GJ, Rolland MO, Wyczechowska D, Fang X, Gazzo S, Voorn DA, Vanier-Viornery A, MacKey J . Common resistance mechanisms to deoxynucleoside analogues in variants of the human erythroleukaemic line K562 Br J Haematol 1999 106: 78–85

    CAS  PubMed  Google Scholar 

  110. Stegmann AP, Honders WH, Willemze R, Ruiz van Haperen VW, Landegent JE . Transfection of wild-type deoxycytidine kinase (dck) cDNA into an AraC- and DAC-resistant rat leukemic cell line of clonal origin fully restores drug sensitivity Blood 1995 85: 1188–1194

    CAS  PubMed  Google Scholar 

  111. Hapke DM, Stegmann AP, Mitchell BS . Retroviral transfer of deoxycytidine kinase into tumor cell lines enhances nucleoside toxicity Cancer Res 1996 56: 2343–2347

    CAS  PubMed  Google Scholar 

  112. Orr RM, Talbot DC, Aherne WG, Fisher TC, Serafinowski P, Harrap KR . 2′-Deoxycytidine kinase deficiency is a major determinant of 2-chloro-2′-deoxyadenosine resistance in lymphoid cell lines Clin Cancer Res 1995 1: 391–398

    CAS  PubMed  Google Scholar 

  113. Ho DH . Distribution of kinase and deaminase of 1-beta-D-arabinofuranosylcytosine in tissues of man and mouse Cancer Res 1973 33: 2816–2820

    CAS  PubMed  Google Scholar 

  114. Spasokoukotskaja T, Arner ES, Brosjo O, Gunven P, Juliusson G, Liliemark J, Eriksson S . Expression of deoxycytidine kinase and phosphorylation of 2-chlorodeoxyadenosine in human normal and tumour cells and tissues Eur J Cancer 1995 2: 202–208

    Google Scholar 

  115. Kakihara T, Fukuda T, Tanaka A, Emura I, Kishi K, Asami K, Uchiyama M . Expression of deoxycytidine kinase (dCK) gene in leukemic cells in childhood: decreased expression of dCK gene in relapsed leukemia Leuk Lymphoma 1998 31: 405–409

    CAS  PubMed  Google Scholar 

  116. Stammler G, Zintl F, Sauerbrey A, Volm M . Deoxycytidine kinase mRNA expression in childhood acute lymphoblastic leukemia Anticancer Drugs 1997 8: 517–521

    CAS  PubMed  Google Scholar 

  117. Tattersall MH, Ganeshaguru K, Hoffbrand AV . Mechanisms of resistance of human acute leukaemia cells to cytosine arabinoside Br J Haematol 1974 27: 39–46

    CAS  PubMed  Google Scholar 

  118. Colly LP, Peters WG, Richel D, Arentsen-Honders MW, Starrenburg CW, Willemze R . Deoxycytidine kinase and deoxycytidine deaminase values correspond closely to clinical response to cytosine arabinoside remission induction therapy in patients with acute myelogenous leukemia Semin Oncol 1987 14: 257–261

    CAS  PubMed  Google Scholar 

  119. Kawasaki H, Carrera CJ, Piro LD, Saven A, Kipps TJ, Carson DA . Relationship of deoxycytidine kinase and cytoplasmic 5′-nucleotidase to the chemotherapeutic efficacy of 2-chlorodeoxyadenosine Blood 1993 81: 597–601

    CAS  PubMed  Google Scholar 

  120. Albertioni F, Lindemalm S, Reichelova V, Pettersson B, Eriksson S, Juliusson G, Liliemark J . Pharmacokinetics of cladribine in plasma and its 5′-monophosphate and 5′-triphosphate in leukemic cells of patients with chronic lymphocytic leukemia Clin Cancer Res 1998 4: 653–658

    CAS  PubMed  Google Scholar 

  121. Leiby JM, Snider KM, Kraut EH, Metz EN, Malspeis L, Grever MR . Phase II trial of 9-beta-D-arabinofuranosyl-2-fluoroadenine 5′-monophosphate in non-Hodgkin's lymphoma: prospective comparison of response with deoxycytidine kinase activity Cancer Res 1987 47: 2719–2722

    CAS  PubMed  Google Scholar 

  122. Owens JK, Shewach DS, Ullman B, Mitchell BS . Resistance to 1-beta-XD-arabinofuranosylcytosine in human T-lymphoblasts mediated by mutations within the deoxycytidine kinase gene Cancer Res 1992 52: 2389–2393

    CAS  PubMed  Google Scholar 

  123. Momparler RL, Cote S, Eliopoulos N . Pharmacological approach for optimization of the dose schedule of 5-Aza-2′-deoxycytidine (Decitabine) for the therapy of leukemia Leukemia 1997 11 (Suppl. 1): S1–S6

    Google Scholar 

  124. Flasshove M, Strumberg D, Ayscue L, Mitchell BS, Tirier C, Heit W, Seeber S, Schutte J . Structural analysis of the deoxycytidine kinase gene in patients with acute myeloid leukemia and resistance to cytosine arabinoside Leukemia 1994 8: 780–785

    CAS  PubMed  Google Scholar 

  125. Veuger MJ, Honders MW, Landegent JE, Willemze R, Barge RM . High incidence of alternatively spliced forms of deoxycytidine kinase in patients with resistant acute myeloid leukemia Blood 2000 96: 1517–1524

    CAS  PubMed  Google Scholar 

  126. Chiba P, Tihan T, Szekeres T, Salamon J, Kraupp M, Eher R, Koller U, Knapp W . Concordant changes of pyrimidine metabolism in blasts of two cases of acute myeloid leukemia after repeated treatment with ara-C in vivo Leukemia 1990 4: 761–765

    CAS  PubMed  Google Scholar 

  127. Chottiner EG, Shewach DS, Datta NS, Ashcraft E, Gribbin D, Ginsburg D, Fox IH, Mitchell BS . Cloning and expression of human deoxycytidine kinase cDNA Proc Natl Acad Sci USA 1991 88: 1531–1535

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Nyce J, Liu L, Jones PA . Variable effects of DNA-synthesis inhibitors upon DNA methylation in mammalian cells Nucleic Acids Res 1986 14: 4353–4367

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Antonsson BE, Avramis VI, Nyce J, Holcenberg JS . Effect of 5-azacytidine and congeners on DNA methylation and expression of deoxycytidine kinase in the human lymphoid cell lines CCRF/CEM/0 and CCRF/CEM/dCk-1 Cancer Res 1987 47: 3672–3678

    CAS  PubMed  Google Scholar 

  130. Harris AL, Grahame-Smith DG . Cytosine arabinoside triphosphate production in human leukaemic myeloblasts: interactions with deoxycytidine Cancer Chemother Pharmacol 1981 5: 185–192

    CAS  PubMed  Google Scholar 

  131. Arner ES, Eriksson S . Mammalian deoxyribonucleoside kinases Pharmacol Ther 1995 67: 155–186

    CAS  PubMed  Google Scholar 

  132. Petrakis TG, Ktistaki E, Wang L, Eriksson S, Talianidis I . Cloning and characterization of mouse deoxyguanosine kinase. Evidence for a cytoplasmic isoform J Biol Chem 1999 274: 24726–24730

    CAS  PubMed  Google Scholar 

  133. Johansson M, Karlsson A . Cloning and expression of human deoxyguanosine kinase cDNA Proc Natl Acad Sci USA 1996 93: 7258–7262

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Johansson M, Karlsson A . Cloning of the cDNA and chromosome localization of the gene for human thymidine kinase 2 J Biol Chem 1997 272: 8454–8458

    CAS  PubMed  Google Scholar 

  135. Wang L, Hellman U, Eriksson S . Cloning and expression of human mitochondrial deoxyguanosine kinase cDNA FEBS Lett 1996 390: 39–43

    CAS  PubMed  Google Scholar 

  136. Wang L, Munch-Petersen B, Herrstrom Sjoberg A, Hellman U, Bergman T, Jornvall H, Eriksson S . Human thymidine kinase 2: molecular cloning and characterisation of the enzyme activity with antiviral and cytostatic nucleoside substrates FEBS Lett 1999 443: 170–174

    CAS  PubMed  Google Scholar 

  137. Resta R, Yamashita Y, Thompson LF . Ecto-enzyme and signaling functions of lymphocyte CD73 Immunol Rev 1998 161: 95–109

    CAS  PubMed  Google Scholar 

  138. Pieters R, Thompson LF, Broekema GJ, Huismans DR, Peters GJ, Pals ST, Horst E, Hahlen K, Veerman AJ . Expression of 5′-nucleotidase (CD73) related to other differentiation antigens in leukemias of B-cell lineage Blood 1991 78: 488–492

    CAS  PubMed  Google Scholar 

  139. Spychala J, Mitchell BS . Regulation of low Km (ecto-) 5′-nucleotidase gene expression in leukemic cells Adv Exp Med Biol 1994 370: 683–687

    CAS  PubMed  Google Scholar 

  140. Rampazzo C, Gazziola C, Ferraro P, Gallinaro L, Johansson M, Reichard P, Bianchi V . Human high-Km 5′-nucleotidase effects of overexpression of the cloned cDNA in cultured human cells Eur J Biochem 1999 261: 689–697

    CAS  PubMed  Google Scholar 

  141. Rampazzo C, Johansson M, Gallinaro L, Ferraro P, Hellman U, Karlsson A, Reichard P, Bianchi V . Mammalian 5′(3′)-deoxyribonucleotidase, cDNA cloning, and overexpression of the enzyme in Escherichia coli and mammalian cells J Biol Chem 2000 275: 5409–5415

    CAS  PubMed  Google Scholar 

  142. Spychala J, Madrid-Marina V, Fox IH . Evidence for ‘low Km’ and ‘high Km’ soluble 5′-nucleotidases in human tissues and rat liver Adv Exp Med Biol 1989 253: 129–134

    Google Scholar 

  143. Madrid-Marina V, Lestan B, Nowak PJ, Fox IH, Spychala J . Altered properties of human T-lymphoblast soluble low Km 5′-nucleotidase: comparison with B-lymphoblast enzyme Leuk Res 1993 17: 231–240

    CAS  PubMed  Google Scholar 

  144. Galmarini CM, Thomas X, Calvo F, Rousselot P, El Jaffari A, Cros E, Dumontet C . Expression of cytoplasmic 5′-nucleotidase in leukemic blasts is an adverse prognostic factor in AML patients treated with cytarabine Blood 2000 96: 101a

    Google Scholar 

  145. Mansson E, Spasokoukotskaja T, Sallstrom J, Eriksson S, Albertioni F . Molecular and biochemical mechanisms of fludarabine and cladribine resistance in a human promyelocytic cell line Cancer Res 1999 59: 5956–5963

    CAS  PubMed  Google Scholar 

  146. Laliberte J, Momparler RL . Human cytidine deaminase: purification of enzyme, cloning, and expression of its complementary DNA Cancer Res 1994 54: 5401–5407

    CAS  PubMed  Google Scholar 

  147. Capizzi RL, White JC, Powell BL, Perrino F . Effect of dose on the pharmacokinetic and pharmacodynamic effects of cytarabine Semin Hematol 1991 28: 54–69

    CAS  PubMed  Google Scholar 

  148. Honma Y, Onozuka Y, Okabe-Kado J, Kasukabe T, Hozumi M . Hemin enhances the sensitivity of erythroleukemia cells to 1-beta-D-arabinofuranosylcytosine by both activation of deoxycytidine kinase and reduction of cytidine deaminase activity Cancer Res 1991 51: 4535–4538

    CAS  PubMed  Google Scholar 

  149. Momparler RL, Laliberte J . Induction of cytidine deaminase in HL-60 myeloid leukemic cells by 5-aza-2′-deoxycytidine Leuk Res 1990 14: 751–754

    CAS  PubMed  Google Scholar 

  150. Momparler RL, Eliopoulos N, Bovenzi V, Letourneau S, Greenbaum M, Cournoyer D . Resistance to cytosine arabinoside by retrovirally mediated gene transfer of human cytidine deaminase into murine fibroblast and hematopoietic cells Cancer Gene Ther 1996 3: 331–338

    CAS  PubMed  Google Scholar 

  151. Schroder JK, Kirch C, Flasshove M, Kalweit H, Seidelmann M, Hilger R, Seeber S, Schutte J . Constitutive overexpression of the cytidine deaminase gene confers resistance to cytosine arabinoside in vitro Leukemia 1996 10: 1919–1924

    CAS  PubMed  Google Scholar 

  152. Steuart CD, Burke PJ . Cytidine deaminase and the development of resistance to arabinosyl cytosine Nat New Biol 1971 233: 109–110

    CAS  PubMed  Google Scholar 

  153. Jahns-Streubel G, Reuter C, Auf der Landwehr U, Unterhalt M, Schleyer E, Wormann B, Buchner T, Hiddemann W . Activity of thymidine kinase and of polymerase alpha, as well as activity and gene expression of deoxycytidine deaminase in leukemic blasts are correlated with clinical response in the setting of granulocyte–macrophage colony-stimulating factor-based priming before and during TAD-9 induction therapy in acute myeloid leukemia Blood 1997 90: 1968–1976

    CAS  PubMed  Google Scholar 

  154. Schröder JK, Kirch C, Seeber S, Schutte J . Structural and functional analysis of the cytidine deaminase gene in patients with acute myeloid leukaemia Br J Haematol 1998 103: 1096–1103

    PubMed  Google Scholar 

  155. Kirch HC, Schroder J, Hoppe H, Esche H, Seeber S, Schutte J . Recombinant gene products of two natural variants of the human cytidine deaminase gene confer different deamination rates of cytarabine in vitro Exp Hematol 1998 26: 421–425

    CAS  PubMed  Google Scholar 

  156. Chabner BA, Hande KR, Drake JC . Ara-C metabolism: implications for drug resistance and drug interactions Bull Cancer 1979 66: 89–92

    CAS  PubMed  Google Scholar 

  157. Liliemark JO, Plunkett W . Regulation of 1-beta-D-arabinofuranosylcytosine 5′-triphosphate accumulation in human leukemia cells by deoxycytidine 5′-triphosphate Cancer Res 1986 46: 1079–1083

    CAS  PubMed  Google Scholar 

  158. Kunz BA . Mutagenesis and deoxyribonucleotide pool imbalance Mutat Res 1988 200: 133–147

    CAS  PubMed  Google Scholar 

  159. Meuth M . The molecular basis of mutations induced by deoxyribonucleoside triphosphate pool imbalances in mammalian cells Exp Cell Res 1989 181: 305–316

    CAS  PubMed  Google Scholar 

  160. Ohno Y, Spriggs D, Matsukage A, Ohno T, Kufe D . Effects of 1-beta-D-arabinofuranosylcytosine incorporation on elongation of specific DNA sequences by DNA polymerase beta Cancer Res 1988 48: 1494–1498

    CAS  PubMed  Google Scholar 

  161. Bjorklund S, Skog S, Tribukait B, Thelander L . S-phase-specific expression of mammalian ribonucleotide reductase R1 and R2 subunit mRNAs Biochemistry 1990 29: 5452–5458

    CAS  PubMed  Google Scholar 

  162. Parker WB, Shaddix SC, Chang CH, White EL, Rose LM, Brockman RW, Shortnacy AT, Montgomery JA, Secrist JAd, Bennett LL, Jr . Effects of 2-chloro-9-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl) adenine on K562 cellular metabolism and the inhibition of human ribonucleotide reductase and DNA polymerases by its 5′-triphosphate Cancer Res 1991 51: 2386–2394

    CAS  PubMed  Google Scholar 

  163. Goan YG, Zhou B, Hu E, Mi S, Yen Y . Overexpression of ribonucleotide reductase as a mechanism of resistance to 2,2-difluorodeoxycytidine in the human KB cancer cell line Cancer Res 1999 59: 4204–4207

    CAS  PubMed  Google Scholar 

  164. Graham FL, Whitmore GF . Studies in mouse L-cells on the incorporation of 1-beta-D-arabinofuranosylcytosine into DNA and on inhibition of DNA polymerase by 1-beta-D-arabinofuranosylcytosine 5′-triphosphate Cancer Res 1970 30: 2636–2644

    CAS  PubMed  Google Scholar 

  165. Allaudeen HS, Kozarich JW, Sartorelli AC . Comparative effects of the 5′-triphosphates of 9-beta-(2′-azido-2′-deoxy-D-arabino-furanosyl)adenine and 9-beta-D-arabinofuranosyladenine on DNA polymerases from L1210 leukemia cells Nucleic Acids Res 1982 10: 1379–1387

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Yoshida S, Yamada M, Masaki S . Inhibition of DNA polymerase-alpha and -beta of calf thymus by 1-beta-D-arabinofuranosylcytosine-5′-triphosphate Biochim Biophys Acta 1977 477: 144–150

    CAS  PubMed  Google Scholar 

  167. Higashigawa M, Ido M, Nagao Y, Kuwabara H, Hori H, Ohkubo T, Kawasaki H, Sakurai M . Decreased DNA polymerase sensitivity to 1-beta-D-arabinofuranosylcytosine 5′-triphosphate in P388 murine leukemic cells resistant to vincristine Leuk Res 1991 15: 675–681

    CAS  PubMed  Google Scholar 

  168. Tanaka M, Yoshida S . Altered sensitivity to 1-beta-D-arabinofuranosylcytosine 5′-triphosphate of DNA polymerase alpha from leukemic blasts of acute lymphoblastic leukemia Cancer Res 1982 42: 649–653

    CAS  PubMed  Google Scholar 

  169. Reed JC . Bcl-2 and the regulation of programmed cell death J Cell Biol 1994 124: 1–6

    CAS  PubMed  Google Scholar 

  170. Miyashita T, Harigai M, Hanada M, Reed JC . Identification of a p53-dependent negative response element in the bcl-2 gene Cancer Res 1994 54: 3131–3135

    CAS  PubMed  Google Scholar 

  171. Miyashita T, Reed JC . Tumor suppressor p53 is a direct transcriptional activator of the human bax gene Cell 1995 80: 293–299

    CAS  PubMed  Google Scholar 

  172. Avramis VI, Nandy P, Kwock R, Solorzano MM, Mukherjee SK, Danenberg P, Cohen LJ . Increased p21/WAF-1 and p53 protein levels following sequential three drug combination regimen of fludarabine, cytarabine and docetaxel induces apoptosis in human leukemia cells Anticancer Res 1998 18: 2327–2338

    CAS  PubMed  Google Scholar 

  173. Gartenhaus RB, Wang P, Hoffman M, Janson D, Rai KR . The induction of p53 and WAF1/CIP1 in chronic lymphocytic leukemia cells treated with 2-chlorodeoxyadenosine J Mol Med 1996 74: 143–147

    CAS  PubMed  Google Scholar 

  174. el Rouby S, Thomas A, Costin D, Rosenberg CR, Potmesil M, Silber R, Newcomb EW . p53 gene mutation in B-cell chronic lymphocytic leukemia is associated with drug resistance and is independent of MDR1/MDR3 gene expression Blood 1993 82: 3452–3459

    CAS  PubMed  Google Scholar 

  175. Wattel E, Preudhomme C, Hecquet B, Vanrumbeke M, Quesnel B, Dervite I, Morel P, Fenaux P . p53 mutations are associated with resistance to chemotherapy and short survival in hematologic malignancies Blood 1994 84: 3148–3157

    CAS  PubMed  Google Scholar 

  176. Johnston JB, Daeninck P, Verburg L, Lee K, Williams G, Israels LG, Mowat MR, Begleiter A . P53, MDM-2, BAX and BCL-2 and drug resistance in chronic lymphocytic leukemia Leuk Lymphoma 1997 26: 435–449

    CAS  PubMed  Google Scholar 

  177. Dohner H, Fischer K, Bentz M, Hansen K, Benner A, Cabot G, Diehl D, Schlenk R, Coy J, Stilgenbauer S et al. p53 gene deletion predicts for poor survival and non-response to therapy with purine analogs in chronic B-cell leukemias Blood 1995 85: 1580–1589

    CAS  PubMed  Google Scholar 

  178. Lens D, Dyer MJ, Garcia-Marco JM, De Schouwer PJ, Hamoudi RA, Jones D, Farahat N, Matutes E, Catovsky D . p53 abnormalities in CLL are associated with excess of prolymphocytes and poor prognosis Br J Haematol 1997 99: 848–857

    CAS  PubMed  Google Scholar 

  179. Kasimir-Bauer S, Ottinger H, Meusers P, Beelen DW, Brittinger G, Seeber S, Scheulen ME . In acute myeloid leukemia, coexpression of at least two proteins, including P-glycoprotein, the multidrug resistance-related protein, bcl-2, mutant p53, and heat-shock protein 27, is predictive of the response to induction chemotherapy Exp Hematol 1998 26: 1111–1117

    CAS  PubMed  Google Scholar 

  180. Kitada S, Andersen J, Akar S, Zapata JM, Takayama S, Krajewski S, Wang HG, Zhang X, Bullrich F, Croce CM, Rai K, Hines J, Reed JC . Expression of apoptosis-regulating proteins in chronic lymphocytic leukemia: correlations with in vitro and in vivo chemoresponses Blood 1998 91: 3379–3389

    CAS  PubMed  Google Scholar 

  181. Lomo J, Smeland EB, Krajewski S, Reed JC, Blomhoff HK . Expression of the Bcl-2 homologue Mcl-1 correlates with survival of peripheral blood B lymphocytes Cancer Res 1996 56: 40–43

    CAS  PubMed  Google Scholar 

  182. Gottardi D, Alfarano A, De Leo AM, Stacchini A, Aragno M, Rigo A, Veneri D, Zanotti R, Pizzolo G, Caligaris-Cappio F . In leukaemic CD5+ B cells the expression of BCL-2 gene family is shifted toward protection from apoptosis Br J Haematol 1996 94: 612–618

    CAS  PubMed  Google Scholar 

  183. Thomas A, El Rouby S, Reed JC, Krajewski S, Silber R, Potmesil M, Newcomb EW . Drug-induced apoptosis in B-cell chronic lymphocytic leukemia: relationship between p53 gene mutation and bcl-2/bax proteins in drug resistance Oncogene 1996 12: 1055–1062

    CAS  PubMed  Google Scholar 

  184. McConkey DJ, Chandra J, Wright S, Plunkett W, McDonnell TJ, Reed JC, Keating M . Apoptosis sensitivity in chronic lymphocytic leukemia is determined by endogenous endonuclease content and relative expression of BCL-2 and BAX J Immunol 1996 156: 2624–2630

    CAS  PubMed  Google Scholar 

  185. Bromidge TJ, Turner DL, Howe DJ, Johnson SA, Rule SA . In vitro chemosensitivity of chronic lymphocytic leukaemia to purine analogues – correlation with clinical course Leukemia 1998 12: 1230–1235

    CAS  PubMed  Google Scholar 

  186. Zaja F, Di Loreto C, Amoroso V, Salmaso F, Russo D, Silvestri F, Fanin R, Damiani D, Infanti L, Mariuzzi L, Beltrami CA, Baccarani M . BCL-2 immunohistochemical evaluation in B-cell chronic lymphocytic leukemia and hairy cell leukemia before treatment with fludarabine and 2-chloro-deoxy-adenosine Leuk Lymphoma 1998 28: 567–572

    CAS  PubMed  Google Scholar 

  187. Morabito F, Filangeri M, Callea I, Sculli G, Callea V, Fracchiolla NS, Neri A, Brugiatelli M . Bcl-2 protein expression and p53 gene mutation in chronic lymphocytic leukemia: correlation with in vitro sensitivity to chlorambucil and purine analogs Haematologica 1997 82: 16–20

    CAS  PubMed  Google Scholar 

  188. Feng L, Achanta G, Pelicano H, Zhang W, Plunkett W, Huang P . Role of p53 in cellular response to anticancer nucleoside analog-induced DNA damage Int J Mol Med 2000 5: 597–604

    CAS  PubMed  Google Scholar 

  189. Plunkett W, Iacoboni S, Estey E, Danhauser L, Liliemark JO, Keating MJ . Pharmacologically directed ara-C therapy for refractory leukemia Semin Oncol 1985 12: 20–30

    CAS  PubMed  Google Scholar 

  190. Sasvari-Szekely M, Spasokoukotskaja T, Szoke M, Csapo Z, Turi A, Szanto I, Eriksson S, Staub M . Activation of deoxycytidine kinase during inhibition of DNA synthesis by 2-chloro-2′-deoxyadenosine (Cladribine) in human lymphocytes Biochem Pharmacol 1998 56: 1175–1179

    CAS  PubMed  Google Scholar 

  191. Spasokoukotskaja T, Sasvari-Szekely M, Keszler G, Albertioni F, Eriksson S, Staub M . Treatment of normal and malignant cells with nucleoside analogues and etoposide enhances deoxycytidine kinase activity Eur J Cancer 1999 35: 1862–1867

    CAS  PubMed  Google Scholar 

  192. Sasvari-Szekely M, Csapo Z, Spasokoukotskaja T, Eriksson S, Staub M . Activation of deoxycytidine kinase during inhibition of DNA synthesis in human lymphocytes Adv Exp Med Biol 1998 431: 519–523

    CAS  PubMed  Google Scholar 

  193. Spasokoukotskaja T, Sasvari-Szekely M, Hullan L, Albertioni F, Eriksson S, Staub M . Activation of deoxycytidine kinase by various nucleoside analogues Adv Exp Med Biol 1998 431: 641–645

    CAS  PubMed  Google Scholar 

  194. Iwasaki H, Huang P, Keating MJ, Plunkett W . Differential incorporation of ara-C, gemcitabine, and fludarabine into replicating and repairing DNA in proliferating human leukemia cells Blood 1997 90: 270–278

    CAS  PubMed  Google Scholar 

  195. Gandhi V, Kemena A, Keating MJ, Plunkett W . Fludarabine infusion potentiates arabinosylcytosine metabolism in lymphocytes of patients with chronic lymphocytic leukemia Cancer Res 1992 52: 897–903

    CAS  PubMed  Google Scholar 

  196. Suki S, Kantarjian H, Gandhi V, Estey E, O'Brien S, Beran M, Rios MB, Plunkett W, Keating M . Fludarabine and cytosine arabinoside in the treatment of refractory or relapsed acute lymphocytic leukemia Cancer 1993 72: 2155–2160

    CAS  PubMed  Google Scholar 

  197. Gandhi V, Nowak B, Keating MJ, Plunkett W . Modulation of arabinosylcytosine metabolism by arabinosyl-2-fluoroadenine in lymphocytes from patients with chronic lymphocytic leukemia: implications for combination therapy Blood 1989 74: 2070–2075

    CAS  PubMed  Google Scholar 

  198. Gandhi V, Estey E, Keating MJ, Plunkett W . Fludarabine potentiates metabolism of cytarabine in patients with acute myelogenous leukemia during therapy J Clin Oncol 1993 11: 116–124

    CAS  PubMed  Google Scholar 

  199. Gandhi V, Robertson LE, Keating MJ, Plunkett W . Combination of fludarabine and arabinosylcytosine for treatment of chronic lymphocytic leukemia: clinical efficacy and modulation of arabinosylcytosine pharmacology Cancer Chemother Pharmacol 1994 34: 30–36

    CAS  PubMed  Google Scholar 

  200. Seymour JF, Huang P, Plunkett W, Gandhi V . Influence of fludarabine on pharmacokinetics and pharmacodynamics of cytarabine: implications for a continuous infusion schedule Clin Cancer Res 1996 2: 653–658

    CAS  PubMed  Google Scholar 

  201. Keating MJ, Estey E, O'Brien S, Kantarjian H, Robertson LE, Plunkett W . Clinical experience with fludarabine in leukaemia Drugs 1994 47: 39–49

    PubMed  Google Scholar 

  202. Avramis VI, Wiersma S, Krailo MD, Ramilo-Torno LV, Sharpe A, Liu-Mares W, Kowck R, Reaman GH, Sato JK . Pharmacokinetic and pharmacodynamic studies of fludarabine and cytosine arabinoside administered as loading boluses followed by continuous infusions after a phase I/II study in pediatric patients with relapsed leukemias. The Children's Cancer Group Clin Cancer Res 1998 4: 45–52

    CAS  PubMed  Google Scholar 

  203. Shewach DS, Mitchell BS . Differential metabolism of 9-beta-D-arabinofuranosylguanine in human leukemic cells Cancer Res 1989 49: 6498–6502

    CAS  PubMed  Google Scholar 

  204. Gandhi V, Kisor D, Rodriguez Jr C, Mitchell B, Kurtzberg J, Keating M, Plunkett W . Pharmacokinetics of arabinosylguanine (ara-G) and its triphosphate (ara-GTP) during a phase I trial of compound GW506U in refractory hematological malignancies: correlation with response Blood 1996 88: 670a

    Google Scholar 

  205. Rodriguez CO Jr, Legha JK, Estey E, Keating MJ, Gandhi V . Pharmacological and biochemical strategies to increase the accumulation of arabinofuranosylguanine triphosphatein primary human leukemia cells Clin Cancer Res 1997 3: 2107–2113

    PubMed  Google Scholar 

  206. Colly LP, Richel DJ, Arentsen-Honders MW, Kester MG, ter Riet PM, Willemze R . Increase in Ara-C sensitivity in Ara-C-sensitive and -resistant leukemia by stimulation of the salvage and inhibition of the de novo pathway Ann Hematol 1992 65: 26–32

    CAS  PubMed  Google Scholar 

  207. Bhalla K, Swerdlow P, Grant S . Effects of thymidine and hydroxyurea on the metabolism and cytotoxicity of 1-B-D-arabinofuranosylcytosine in highly resistant human leukemia cells Blood 1991 78: 2937–2944

    CAS  PubMed  Google Scholar 

  208. Gandhi V, Estey E, Keating MJ, Plunkett W . Biochemical modulation of arabinosylcytosine for therapy of leukemias Leuk Lymphoma 1993 10: 109–114

    PubMed  Google Scholar 

  209. Gandhi V, Estey E, Keating MJ, Chucrallah A, Plunkett W . Chlorodeoxyadenosine and arabinosylcytosine in patients with acute myelogenous leukemia: pharmacokinetic, pharmacodynamic, and molecular interactions Blood 1996 87: 256–264

    CAS  PubMed  Google Scholar 

  210. Baker WJ, Royer GL Jr, Weiss RB . Cytarabine and neurologic toxicity J Clin Oncol 1991 9: 679–693

    CAS  PubMed  Google Scholar 

  211. Cheson BD, Vena DA, Foss FM, Sorensen JM . Neurotoxicity of purine analogs: a review J Clin Oncol 1994 12: 2216–2228

    CAS  PubMed  Google Scholar 

  212. Mohammad RM, Beck FW, Katato K, Hamdy N, Wall N, Al-Katib A . Potentiation of 2-chlorodeoxyadenosine activity by bryostatin 1 in the resistant chronic lymphocytic leukemia cell line (WSU-CLL): association with increased ratios of dCK/5′-NT and Bax/Bcl-2 Biol Chem 1998 379: 1253–1261

    CAS  PubMed  Google Scholar 

  213. Mohammad RM, Limvarapuss C, Hamdy N, Dutcher BS, Beck FW, Wall NR, Al-Katib AM . Treatment of a de novo fludarabine resistant-CLL xenograft model with bryostatin 1 followed by fludarabine Int J Oncol 1999 14: 945–950

    CAS  PubMed  Google Scholar 

  214. Varterasian ML, Mohammad RM, Eilender DS, Hulburd K, Rodriguez DH, Pemberton PA, Pluda JM, Dan MD, Pettit GR, Chen BD, Al-Katib AM . Phase I study of bryostatin 1 in patients with relapsed non-Hodgkin's lymphoma and chronic lymphocytic leukemia J Clin Oncol 1998 16: 56–62

    CAS  PubMed  Google Scholar 

  215. Miyauchi J, Kelleher CA, Wang C, Minkin S, McCulloch EA . Growth factors influence the sensitivity of leukemic stem cells to cytosine arabinoside in culture Blood 1989 73: 1272–1278

    CAS  PubMed  Google Scholar 

  216. Butturini A, Santucci MA, Gale RP, Perocco P, Tura S . GM-CSF incubation prior to treatment with cytarabine or doxorubicin enhances drug activity against AML cells in vitro: a model for leukemia chemotherapy Leuk Res 1990 14: 743–749

    CAS  PubMed  Google Scholar 

  217. Wiley JS, Snook MB, Jamieson GP . Nucleoside transport in acute leukaemia and lymphoma: close relation to proliferative rate Br J Haematol 1989 71: 203–207

    CAS  PubMed  Google Scholar 

  218. Petersen AJ, Brown RD, Pope BB, Jamieson GP, Paterson AR, Gibson J, Wiley JS, Joshua DE . Multiple myeloma: expression of nucleoside transporters on malignant plasma cells and their relationship to cellular proliferation Leuk Lymphoma 1994 13: 491–499

    CAS  PubMed  Google Scholar 

  219. Wiley JS, Cebon JS, Jamieson GP, Szer J, Gibson J, Woodruff RK, McKendrick JJ, Sheridan WP, Biggs JC, Snook MB et al. Assessment of proliferative responses to granulocyte–macrophage colony-stimulating factor (GM-CSF) in acute myeloid leukaemia using a fluorescent ligand for the nucleoside transporter Leukemia 1994 8: 181–185

    CAS  PubMed  Google Scholar 

  220. Reuter C, Auf der Landwehr U, Schleyer E, Zuhlsdorf M, Ameling C, Rolf C, Wormann B, Buchner T, Hiddemann W . Modulation of intracellular metabolism of cytosine arabinoside in acute myeloid leukemia by granulocyte–macrophage colony-stimulating factor Leukemia 1994 8: 217–225

    CAS  PubMed  Google Scholar 

  221. Ben-Ishay Z, Prindull G, Sharon S . Improved prognosis in mice with advanced myeloid leukemia following administration of GM-CSF and cytosine arabinoside Leuk Res 1991 15: 321–325

    CAS  PubMed  Google Scholar 

  222. Bettelheim P, Valent P, Andreeff M, Tafuri A, Haimi J, Gorischek C, Muhm M, Sillaber C, Haas O, Vieder L et al. Recombinant human granulocyte–macrophage colony-stimulating factor in combination with standard induction chemotherapy in de novo acute myeloid leukemia Blood 1991 77: 700–711

    CAS  PubMed  Google Scholar 

  223. Lowenberg B, Suciu S, Archimbaud E, Ossenkoppele G, Verhoef GE, Vellenga E, Wijermans P, Berneman Z, Dekker AW, Stryckmans P, Schouten H, Jehn U, Muus P, Sonneveld P, Dardenne M, Zittoun R . Use of recombinant GM-CSF during and after remission induction chemotherapy in patients aged 61 years and older with acute myeloid leukemia: final report of AML-11, a phase III randomized study of the Leukemia Cooperative Group of European Organisation for the Research and Treatment of Cancer and the Dutch Belgian Hemato-Oncology Cooperative Group Blood 1997 90: 2952–2961

    CAS  PubMed  Google Scholar 

  224. Ohno R, Naoe T, Kanamaru A, Yoshida M, Hiraoka A, Kobayashi T, Ueda T, Minami S, Morishima Y, Saito Y et al. A double-blind controlled study of granulocyte colony-stimulating factor started two days before induction chemotherapy in refractory acute myeloid leukemia. Kohseisho Leukemia Study Group Blood 1994 83: 2086–2092

    CAS  PubMed  Google Scholar 

  225. Yang LY, Li L, Keating MJ, Plunkett W . Arabinosyl-2-fluoroadenine augments cisplatin cytotoxicity and inhibits cisplatin-DNA cross-link repair Mol Pharmacol 1995 47: 1072–1079

    CAS  PubMed  Google Scholar 

  226. Van Den Neste E, Bontemps F, Delacauw A, Cardoen S, Louviaux I, Scheiff JM, Gillis E, Leveugle P, Deneys V, Ferrant A, Van den Berghe G . Potentiation of antitumor effects of cyclophosphamide derivatives in B-chronic lymphocytic leukemia cells by 2-chloro-2′-deoxyadenosine Leukemia 1999 13: 918–925

    CAS  PubMed  Google Scholar 

  227. Robertson LE, O'Brien S, Kantarjian H, Koller C, Beran M, Andreeff M, Lerner S, Keating MJ . Fludarabine plus doxorubicin in previously treated chronic lymphocytic leukemia Leukemia 1995 9: 943–945

    CAS  PubMed  Google Scholar 

  228. Keating MJ, O'Brien S, Robertson LE, Kantarjian H, Dimopoulos M, McLaughlin P, Cabanillas F, Gregoire V, Li YY, Gandhi V et al. The expanding role of fludarabine in hematologic malignancies Leuk Lymphoma 1994 14: 11–16

    PubMed  Google Scholar 

  229. McLaughlin P, Hagemeister FB, Swan F Jr, Cabanillas F, Pate O, Romaguera JE, Rodriguez MA, Redman JR, Keating M . Phase I study of the combination of fludarabine, mitoxantrone, and dexamethasone in low-grade lymphoma J Clin Oncol 1994 12: 575–579

    CAS  PubMed  Google Scholar 

  230. McLaughlin P, Hagemeister FB, Romaguera JE, Sarris AH, Pate O, Younes A, Swan F, Keating M, Cabanillas F . Fludarabine, mitoxantrone, and dexamethasone: an effective new regimen for indolent lymphoma J Clin Oncol 1996 14: 1262–1268

    CAS  PubMed  Google Scholar 

  231. Kantarjian HM, Walters RL, Keating MJ, Estey EH, O'Brien S, Schachner J, McCredie KB, Freireich EJ . Mitoxantrone and high-dose cytosine arabinoside for the treatment of refractory acute lymphocytic leukemia Cancer 1990 65: 5–8

    CAS  PubMed  Google Scholar 

  232. Heinemann V, Murray D, Walters R, Meyn RE, Plunkett W . Mitoxantrone-induced DNA damage in leukemia cells is enhanced by treatment with high-dose arabinosylcytosine Cancer Chemother Pharmacol 1988 22: 205–210

    CAS  PubMed  Google Scholar 

  233. Crino L, Scagliotti G, Marangolo M, Figoli F, Clerici M, De Marinis F, Salvati F, Cruciani G, Dogliotti L, Pucci F, Paccagnella A, Adamo V, Altavilla G, Incoronato P, Trippetti M, Mosconi AM, Santucci A, Sorbolini S, Oliva C, Tonato M . Cisplatin–gemcitabine combination in advanced non-small-cell lung cancer: a phase II study J Clin Oncol 1997 15: 297–303

    CAS  PubMed  Google Scholar 

  234. Mosconi AM, Crino L, Tonato M . Combination therapy with gemcitabine in non-small cell lung cancer Eur J Cancer 1997 33 (Suppl. 1): S14–S17

    Google Scholar 

  235. Grove KL, Guo X, Liu SH, Gao Z, Chu CK, Cheng YC . Anticancer activity of beta-L-dioxolane-cytidine, a novel nucleoside analogue with the unnatural L configuration Cancer Res 1995 55: 3008–3011

    CAS  PubMed  Google Scholar 

  236. Grove KL, Cheng YC . Uptake and metabolism of the new anticancer compound beta-L-(−)-dioxolane-cytidine in human prostate carcinoma DU-145 cells Cancer Res 1996 56: 4187–4191

    CAS  PubMed  Google Scholar 

  237. Kadhim SA, Bowlin TL, Waud WR, Angers EG, Bibeau L, DeMuys JM, Bednarski K, Cimpoia A, Attardo G . Potent antitumor activity of a novel nucleoside analogue, BCH-4556 (beta-L-dioxolane-cytidine), in human renal cell carcinoma xenograft tumor models Cancer Res 1997 57: 4803–4810

    CAS  PubMed  Google Scholar 

  238. Giles F, Cortes J, Thomas DA, Koller C, Beran M, Proulx L, Jolivet J, Freireich E, Bivins CA, Estey E, Kantarjian HM . Troxacitabine, (BCH-4556), a novel dioxolane nucleoside analog, has anti-leukemic activity Proc Am Soc Hemat 1999 94: 4231A

    Google Scholar 

  239. Cohen A, Lee JW, Gelfand EW . Selective toxicity of deoxyguanosine and arabinosyl guanine for T-leukemic cells Blood 1983 61: 660–666

    CAS  PubMed  Google Scholar 

  240. Aguayo A, Cortes JE, Kantarjian HM, Beran M, Gandhi V, Plunkett W, Kurtzberg J, Keating MJ . Complete hematologic and cytogenetic response to 2-amino-9-beta-D-arabinosyl-6-methoxy-9H-guanine in a patient with chronic myelogenous leukemia in T-cell blastic phase: a case report and review of the literature Cancer 1999 85: 58–64

    CAS  PubMed  Google Scholar 

  241. Kurtzberg J, Ernst T, Keating M, Gandhi V, Hodge J, Kisor D, Therriault R, Stephens C, Levin J, Krenitsky T, Elion G, Mitchell B . A phase I study of 2-amino-9-B-D-arabinosyl-6-methoxy-9H-purine (506U78) administered on a consecutive five-day schedule in children and adults with refractory hematologic malignancies Proc Am Soc Hematol 1999 94: 2794A

    Google Scholar 

  242. Jamieson GP, Snook MB, Bradley TR, Bertoncello I, Wiley JS . Transport and metabolism of 1-beta-D-arabinofuranosylcytosine in human ovarian adenocarcinoma cells Cancer Res 1989 49: 309–313

    CAS  PubMed  Google Scholar 

  243. Avery TL, Rehg JE, Lumm WC, Harwood FC, Santana VM, Blakley RL . Biochemical pharmacology of 2-chlorodeoxyadenosine in malignant human hematopoietic cell lines and therapeutic effects of 2-bromodeoxyadenosine in drug combinations in mice Cancer Res 1989 49: 4972–4978

    CAS  PubMed  Google Scholar 

  244. Hoglund L, Reichard P . Cytoplasmic 5′(3′)-nucleotidase from human placenta J Biol Chem 1990 265: 6589–6595

    CAS  PubMed  Google Scholar 

  245. Misumi Y, Ogata S, Ohkubo K, Hirose S, Ikehara Y . Primary structure of human placental 5′-nucleotidase and identification of the glycolipid anchor in the mature form Eur J Biochem 1990 191: 563–569

    CAS  PubMed  Google Scholar 

  246. Zimmermann H . 5′-Nucleotidase: molecular structure and functional aspects Biochem J 1992 285: 345–365

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Carlos Galmarini is a recipient of the ‘Michel Clavel’ grant. The authors acknowledge the support of the Ligue Contre le Cancer du Rhône and the Alberta Cancer Foundation and National Cancer Institute of Canada.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galmarini, C., Mackey, J. & Dumontet, C. Nucleoside analogues: mechanisms of drug resistance and reversal strategies. Leukemia 15, 875–890 (2001). https://doi.org/10.1038/sj.leu.2402114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402114

Keywords

This article is cited by

Search

Quick links