Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Molecular pathogenesis of MALT lymphoma: two signaling pathways underlying the antiapoptotic effect of API2-MALT1 fusion protein

Abstract

At least three recurrent chromosomal translocations, t(11;18)(q21;q21), t(1;14)(p22;q32), t(14;18)(q32;q21), involving the API2-MALT1 fusion protein, BCL10 and MALT1, have been implicated in the pathogenesis of mucosa-associated lymphoid tissue (MALT) lymphoma. Several lines of evidence indicated that both BCL10 and MALT1 are required for nuclear factor kappa B (NF-κB) activation by antigen receptor stimulation in lymphocytes, and API2-MALT1 can bypass this BCL10/MALT1 signaling pathway. Nuclear factor kappa B activation may contribute to antiapoptotic effect through NF-κB-mediated upregulation of apoptotic inhibitor genes. We recently demonstrated that API2-MALT1 can induce transactivation of the API2 gene through NF-κB activation, thus highlighting a positive feedback-loop mechanism of self-activation by upregulating its own expression in t(11;18) MALT lymphomas. We also demonstrated that API2-MALT1 possesses an antiapoptotic effect, in part, through its direct interaction with apoptotic regulators. These findings therefore led us to hypothesize that the antiapoptotic effect by API2-MALT1 may be mediated by its interaction with apoptotic regulators, on the one hand, and by NF-κB-mediated upregulation of apoptotic inhibitor genes on the other. We also found that BCL10 and MALT1 are shuttling between nucleus and cytoplasm, and that MALT1 can regulate the subcellular location of BCL10.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Isaacson P, Wright DH . Malignant lymphoma of mucosa-associated lymphoid tissue. A distinctive type of B-cell lymphoma. Cancer 1983; 52: 1410–1416.

    Article  CAS  PubMed  Google Scholar 

  2. Harris NL, Jaffe ES, Stein H, Banks PM, Chan JK, Cleary ML et al. A revised European–American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood 1994; 84: 1361–1392.

    CAS  PubMed  Google Scholar 

  3. Isaacson PG, Muller-Hermelink HK, Piris MA, Berger F, Nathwani BN, Swerdlow SH et al. Extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma). In: Jaffe ES, Harris NL, Stein H, Vardiman JW (eds). World Health Organization Classification of Tumours. Pathology and Genetics: Tumours of Haemopoietic and Lymphoid Tissues. IARC Press: Lyon, 2001, pp 157–160.

    Google Scholar 

  4. Isaacson PG . Gastric MALT lymphoma: from concept to cure. Ann Oncol 1999; 10: 637–645.

    Article  CAS  PubMed  Google Scholar 

  5. Du MQ, Isaacson PG . Gastric MALT lymphoma: from aetiology to treatment. Lancet Oncol 2002; 3: 97–104.

    Article  CAS  PubMed  Google Scholar 

  6. Maes B, De Wolf-Peeters C . Marginal zone cell lymphoma – an update on recent advances. Histopathology 2002; 40: 117–1267.

    Article  CAS  PubMed  Google Scholar 

  7. Isaacson PG, Du MQ . MALT lymphoma: from morphology to molecules. Nat Rev Cancer 2004; 4: 644–653.

    Article  CAS  PubMed  Google Scholar 

  8. Isaacson PG, Du MQ . Gastrointestinal lymphoma: where morphology meets molecular biology. J Pathol 2005; 205: 255–274.

    Article  CAS  PubMed  Google Scholar 

  9. Wotherspoon AC, Ortiz Hidalgo C, Falzon MR, Isaacson PG . Helicobacter pylori-associated gastritis and primary B-cell gastric lymphoma. Lancet 1991; 338: 1175–1176.

    Article  CAS  PubMed  Google Scholar 

  10. Parsonnet J, Hansen S, Rodríguez L, Gelb AB, Warnke RA, Jellum E et al. Helicobacter pylori infection and gastric lymphoma. N Engl J Med 1994; 330: 1267–1271.

    Article  CAS  PubMed  Google Scholar 

  11. Eidt S, Stolte M, Fischer R . Helicobacter pylori gastritis and primary gastric non-Hodgkin's lymphomas. J Clin Pathol 1994; 47: 436–439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nakamura S, Yao T, Aoyagi K, Iida M, Fujishima M, Tsuneyoshi M . Helicobacter pylori and primary gastric lymphoma. A histopathologic and immunohistochemical analysis of 237 patients. Cancer 1997; 79: 3–11.

    Article  CAS  PubMed  Google Scholar 

  13. Nakamura S, Aoyagi K, Furuse M, Suekane H, Matsumoto T, Yao T et al. B-cell monoclonality precedes the development of gastric MALT lymphoma in Helicobacter pylori-associated chronic gastritis. Am J Pathol 1998; 152: 1271–1279.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hussell T, Isaacson PG, Crabtree JE, Spencer J . The response of cells from low-grade B-cell gastric lymphomas of mucosa-associated lymphoid tissue to Helicobacter pylori. Lancet 1993; 342: 571–574.

    Article  CAS  PubMed  Google Scholar 

  15. Hussell T, Isaacson PG, Crabtree JE, Spencer J . Helicobacter pylori-specific tumour-infiltrating T cells provide contact dependent help for the growth of malignant B cells in low- grade gastric lymphoma of mucosa-associated lymphoid tissue. J Pathol 1996; 178: 122–127.

    Article  CAS  PubMed  Google Scholar 

  16. Wotherspoon AC, Doglioni C, Diss TC, Pan L, Moschini A, de Boni M et al. Regression of primary low-grade B-cell gastric lymphoma of mucosa-associated lymphoid tissue type after eradication of Helicobacter pylori. Lancet 1993; 342: 575–577.

    Article  CAS  PubMed  Google Scholar 

  17. Isaacson PG, Diss TC, Wotherspoon AC, Barbazza R, De Boni M, Doglioni C . Long-term follow-up of gastric MALT lymphoma treated by eradication of H. pylori with antibodies. Gastroenterology 1999; 117: 750–751.

    Article  CAS  PubMed  Google Scholar 

  18. Qin Y, Greiner A, Trunk MJF, Schmausser B, Ott MM, Müller-Hermelink HK . Somatic hypermutation in low-grade mucosa-associated lymphoid tissue-type B-cell lymphoma. Blood 1995; 86: 3528–3534.

    CAS  PubMed  Google Scholar 

  19. Du MQ, Xu CF, Diss TC, Peng HZ, Wotherspoon AC, Isaacson PG et al. Intestinal dissemination of gastric mucosa-associated lymphoid tissue lymphoma. Blood 1996; 88: 4445–4451.

    CAS  PubMed  Google Scholar 

  20. Du M, Diss TC, Xu C, Peng H, Isaacson PG, Pan L . Ongoing mutation in MALT lymphoma immunoglobulin gene suggests that antigen stimulation plays a role in the clonal expansion. Leukemia 1996; 10: 1190–1197.

    CAS  PubMed  Google Scholar 

  21. Qin Y, Greiner A, Hallas C, Haedicke W, Muller-Hermelink HK . Intraclonal offspring expansion of gastric low-grade MALT-type lymphoma: evidence for the role of antigen-driven high-affinity mutation in lymphomagenesis. Lab Invest 1997; 76: 477–485.

    CAS  PubMed  Google Scholar 

  22. Tierens A, Delabie J, Pittaluga S, Driessen A, De Wolf-Peeters C . Mutation analysis of the rearranged immunoglobulin heavy chain genes of marginal zone cell lymphomas indicates an origin from different marginal zone B lymphocyte subsets. Blood 1998; 91: 2381–2386.

    CAS  PubMed  Google Scholar 

  23. Thiede C, Alpen B, Morgner A, Schmidt M, Ritter M, Ehninger G et al. Ongoing somatic mutations and clonal expansions after cure of Helicobacter pylori infection in gastric mucosa-associated lymphoid tissue B-cell lymphoma. J Clin Oncol 1998; 16: 3822–3831.

    Article  CAS  PubMed  Google Scholar 

  24. Wotherspoon AC, Pan LX, Diss TC, Isaacson PG . Cytogenetic study of B-cell lymphoma of mucosa-associated lymphoid tissue. Cancer Genet Cytogenet 1992; 58: 35–38.

    Article  CAS  PubMed  Google Scholar 

  25. Clark HM, Jones DB, Wright DH . Cytogenetic and molecular studies of t(14;18) and t(14;19) in nodal and extranodal B-cell lymphoma. J Pathol 1992; 166: 129–137.

    Article  CAS  PubMed  Google Scholar 

  26. Du M, Peng H, Singh N, Isaacson PG, Pan L . The accumulation of p53 abnormalities is associated with progression of mucosa-associated lymphoid tissue lymphoma. Blood 1995; 86: 4587–4593.

    CAS  PubMed  Google Scholar 

  27. Wotherspoon AC, Finn TM, Isaacson PG . Trisomy 3 in low-grade B-cell lymphomas of mucosa-associated lymphoid tissue. Blood 1995; 85: 2000–2004.

    CAS  PubMed  Google Scholar 

  28. Dierlamm J, Pittaluga S, Wlodarska I, Stul M, Thomas J, Boogaerts M et al. Marginal zone B-cell lymphomas of different sites share similar cytogenetic and morphologic features. Blood 1996; 87: 299–307.

    CAS  PubMed  Google Scholar 

  29. Dierlamm J, Michaux L, Wlodarska I, Pittaluga S, Zeller W, Stul M et al. Trisomy 3 in marginal zone B-cell lymphoma: a study based on cytogenetic analysis and fluorescence in situ hybridization. Br J Haematol 1996; 93: 242–249.

    Article  CAS  PubMed  Google Scholar 

  30. Brynes RK, Almaguer PD, Leathery KE, McCourty A, Arber DA, Medeiros LJ et al. Numerical cytogenetic abnormalities of chromosomes 3, 7, and 12 in marginal zone B-cell lymphomas. Mod Pathol 1996; 9: 995–1000.

    CAS  PubMed  Google Scholar 

  31. Dierlamm J, Rosenberg C, Stul M, Pittaluga S, Wlodarska I, Michaux L et al. Characteristic pattern of chromosomal gains and losses in marginal zone B cell lymphoma detected by comparative genomic hybridization. Leukemia 1997; 11: 747–758.

    Article  CAS  PubMed  Google Scholar 

  32. Auer IA, Gascoyne RD, Connors JM, Cotter FE, Greiner TC, Sanger WG et al. t(11;18)(q21;q21) is the most common translocation in MALT lymphomas. Ann Oncol 1997; 8: 979–985.

    Article  CAS  PubMed  Google Scholar 

  33. Neumeister P, Hoefler G, Beham-Schmid C, Schmidt H, Apfelbeck U, Schaider H et al. Deletion analysis of the p16 tumor suppressor gene in gastrointestinal mucosa-associated lymphoid tissue lymphomas. Gastroenterology 1997; 112: 1871–1875.

    Article  CAS  PubMed  Google Scholar 

  34. Ott G, Katzenberger T, Greiner A, Kalla J, Rosenwald A, Heinrich U et al. The t(11;18)(q21;q21) chromosome translocation is a frequent and specific aberration in low-grade but not high-grade malignant non-Hodgkin's lymphomas of the mucosa-associated lymphoid tissue (MALT) type. Cancer Res 1997; 57: 3944–3948.

    CAS  PubMed  Google Scholar 

  35. Ott G, Kalla J, Steinhoff A, Rosenwald A, Katzenberger T, Roblick U et al. Trisomy 3 is not a common feature in malignant lymphomas of mucosa-associated lymphoid tissue type. Am J Pathol 1998; 153: 689–694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Willis TG, Jadayel DM, Du MQ, Peng H, Perry AR, Abdul-Rauf M et al. Bcl10 is involved in t(1;14)(p22;q32) of MALT B-cell lymphoma and mutated in multiple tumor types. Cell 1999; 96: 35–45.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Q, Siebert R, Yan M, Hinzmann B, Cui X, Xue L et al. Inactivating mutations and overexpression of BCL10, a caspase recruitment domaincontaining gene, in MALT lymphoma with t(1;14)(p22;q32). Nat Genet 1999; 22: 63–68.

    Article  CAS  PubMed  Google Scholar 

  38. Murga Penas EM, Hinz K, Roser K, Copie-Bergman C, Wlodarska I, Marynen P et al. Translocations t(11;18)(q21;q21) and t(14;18)(q32;q21) are the main chromosomal abnormalities involving MLT/MALT1 in MALT lymphomas. Leukemia 2003; 17: 2225–2229.

    Article  CAS  PubMed  Google Scholar 

  39. Remstein ED, Kurtin PJ, Einerson RR, Paternoster SF, Dewald GW . Primary pulmonary MALT lymphomas show frequent and heterogeneous cytogenetic abnormalities, including aneuploidy and translocations involving API2 and MALT1 and IGH and MALT1. Leukemia 2004; 18: 156–160.

    Article  CAS  PubMed  Google Scholar 

  40. Streubel B, Vinatzer U, Lamprecht A, Raderer M, Chott A . T(3;14)(p14.1;q32) involving IGH and FOXP1 is a novel recurrent chromosomal aberration in MALT lymphoma. Leukemia 2005; 19: 652–658.

    Article  CAS  PubMed  Google Scholar 

  41. Remstein ED, James CD, Kurtin PJ . Incidence and subtype specificity of API2-MALT1 fusion translocations in extranodal, nodal, and splenic marginal zone lymphomas. Am J Pathol 2000; 156: 1183–1188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Baens M, Maes B, Steyls A, Geboes K, Marynen P, De Wolf-Peeters C . The product of the t(11;18), an API2-MLT fusion, marks nearly half of gastric MALT type lymphomas without large cell proliferation. Am J Pathol 2000; 156: 1433–1439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Motegi M, Yonezumi M, Suzuki H, Suzuki R, Hosokawa Y, Hosaka S et al. API2-MALT1 chimeric transcripts involved in mucosa-associated lymphoid tissue type lymphoma predict heterogeneous products. Am J Pathol 2000; 156: 807–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ye H, Liu H, Attygalle A, Wotherspoon AC, Nicholson AG, Charlotte F et al. Variable frequencies of t(11;18)(q21;q21) in MALT lymphomas of different sites: significant association with CagA strains of H. pylori in gastric MALT lymphoma. Blood 2003; 102: 1012–1018.

    Article  CAS  PubMed  Google Scholar 

  45. Dierlamm J, Pittaluga S, Stul M, Wlodarska I, Michaux L, Thomas J et al. BCL6 gene rearrangements also occur in marginal zone B-cell lymphoma. Br J Haematol 1997; 98: 719–725.

    Article  CAS  PubMed  Google Scholar 

  46. Omonishi K, Yoshino T, Sakuma I, Kobayashi K, Moriyama M, Akagi T . Bcl-6 protein is identified in high-grade but not low-grade mucosa-associated lymphoid tissue lymphomas of the stomach. Mod Pathol 1998; 11: 181–185.

    CAS  PubMed  Google Scholar 

  47. Starostik P, Patzner J, Greiner A, Schwarz S, Kalla J, Ott G et al. Gastric marginal zone B-cell lymphomas of MALT type develop along 2 distinct pathogenetic pathways. Blood 2002; 99: 3–9.

    Article  CAS  PubMed  Google Scholar 

  48. Wlodarska I, Veyt E, De Paepe P, Vandenberghe P, Nooijen P, Theate I et al. FOXP1, a gene highly expressed in a subset of diffuse large B-cell lymphoma, is recurrently targeted by genomic aberrations. Leukemia 2005; 19: 1299–1305.

    Article  CAS  PubMed  Google Scholar 

  49. Takino H, Okabe M, Li C, Ohshima K, Yoshino T, Nakamura S et al. p16/INK4a gene methylation is a frequent finding in pulmonary MALT lymphomas at diagnosis. Mod Pathol 2005; 18: 1187–1192.

    Article  CAS  PubMed  Google Scholar 

  50. Gronbaek K, Straten PT, Ralfkiaer E, Ahrenkiel V, Andersen MK, Hansen NE et al. Somatic Fas mutations in non-Hodgkin's lymphoma: association with extranodal disease and autoimmunity. Blood 1998; 92: 3018–3024.

    CAS  PubMed  Google Scholar 

  51. Akagi T, Motegi M, Tamura A, Suzuki R, Hosokawa Y, Suzuki H et al. A novel gene, MALT1 at 18q21, is involved in t(11;18) (q21;q21) found in low-grade B-cell lymphoma of mucosa-associated lymphoid tissue. Oncogene 1999; 18: 5785–5794.

    Article  CAS  PubMed  Google Scholar 

  52. Dierlamm J, Baens M, Wlodarska I, Stefanova-Ouzounova M, Hernandez JM, Hossfeld DK et al. The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue lymphomas. Blood 1999; 93: 3601–3609.

    CAS  PubMed  Google Scholar 

  53. Morgan JA, Yin Y, Borowsky AD, Kuo F, Nourmand N, Koontz JI et al. Breakpoints of the t(11;18)(q21;q21) in mucosa-associated lymphoid tissue (MALT) lymphoma lie within or near the previously undescribed gene MALT1 in chromosome 18. Cancer Res 1999; 59: 6205–6213.

    CAS  PubMed  Google Scholar 

  54. Uren AG, O'Rourke K, Aravind LA, Pisabarro MT, Seshagiri S, Koonin EV et al. Identification of paracaspases and metacaspases. Two ancient families of caspaselike proteins, one of which plays a key role in MALT lymphoma. Mol Cell 2000; 6: 961–967.

    CAS  PubMed  Google Scholar 

  55. Lucas PC, Yonezumi M, Inohara N, McAllister-Lucas LM, Abazeed ME, Chen FF et al. Bcl10 and MALT1, independent targets of chromosomal translocation in malt lymphoma, cooperate in a novel NF-kappa B signaling pathway. J Biol Chem 2001; 276: 19012–19019.

    Article  CAS  PubMed  Google Scholar 

  56. Lucas PC, McAllister-Lucas LM, Nunez G . NF-kappaB signaling in lymphocytes: a new cast of characters. J Cell Sci 2004; 117: 31–39.

    Article  CAS  PubMed  Google Scholar 

  57. Thome M . CARMA1, BCL-10 and MALT1 in lymphocyte development and activation. Nat Rev Immunol 2004; 4: 348–359.

    Article  CAS  PubMed  Google Scholar 

  58. Lin X, Wang D . The roles of CARMA1, Bcl10, and MALT1 in antigen receptor signaling. Semin Immunol 2004; 16: 429–435.

    Article  CAS  PubMed  Google Scholar 

  59. Hosokawa Y . Anti-apoptotic action of API2-MALT1 fusion protein involved in t(11;18)(q21;q21) MALT lymphoma. Apoptosis 2005; 10: 25–34.

    Article  CAS  PubMed  Google Scholar 

  60. Huang H, Joazeiro CAP, Bonfoco E, Kamada S, Leverson JD, Hunter T . The inhibitor of apoptosis, cIAP2, functions as a ubiquitin-protein ligase and promotes in vitro monoubiquitination of caspases 3 and 7. J Biol Chem 2000; 275: 26661–26664.

    CAS  PubMed  Google Scholar 

  61. Yang Y, Fang S, Jensen JP, Weissman AM, Ashwell JD . Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 2000; 288: 874–877.

    Article  CAS  PubMed  Google Scholar 

  62. Ruland J, Duncan GS, Elia A, del Barco Barrantes I, Nguyen L, Plyte S et al. Bcl10 is a positive regulator of antigen receptor-induced activation of NF-kappaB and neural tube closure. Cell 2001; 104: 33–42.

    Article  CAS  PubMed  Google Scholar 

  63. Xue L, Morris SW, Orihuela C, Tuomanen E, Cui X, Wen R et al. Defective development and function of Bcl10-deficient follicular, marginal zone and B1 B cells. Nature Immunol 2003; 4: 857–865.

    Article  CAS  Google Scholar 

  64. Ruefli-Brasse AA, French DM, Dixit VM . Regulation of NF-kappaB-dependent lymphocyte activation and development by paracaspase. Science 2003; 302: 1581–1584.

    Article  CAS  PubMed  Google Scholar 

  65. Ruland J, Duncan GS, Wakeham A, Mak TW . Differential requirement for Malt1 in T and B cell antigen receptor signaling. Immunity 2003; 19: 749–758.

    Article  CAS  PubMed  Google Scholar 

  66. Izumiyama K, Nakagawa M, Yonezumi M, Kasugai Y, Suzuki R, Suzuki H et al. Stability and subcellular localization of API2-MALT1 chimeric protein involved in t(11;18) (q21;q21) MALT lymphoma. Oncogene 2003; 22: 8085–8092.

    Article  CAS  PubMed  Google Scholar 

  67. Liu H, Ruskon-Fourmestraux A, Lavergne-Slove A, Ye H, Molina T, Bouhnik Y et al. Resistance of t(11;18) positive gastric mucosa-associated lymphoid tissue lymphoma to Helicobacter pylori eradication therapy. Lancet 2001; 357: 39–40.

    Article  CAS  PubMed  Google Scholar 

  68. Liu H, Ye H, Ruskone-Fourmestraux A, De Jong D, Pileri S, Thiede C et al. T(11;18) is a marker for all stage gastric MALT lymphomas that will not respond to H. pylori eradication. Gastroenterology 2002; 122: 1286–1294.

    Article  CAS  PubMed  Google Scholar 

  69. Sugiyama T, Asaka M, Nakamura T, Nakamura S, Yonezumi S, Seto M . API2-MALT1 chimeric transcript is a predictive marker for the responsiveness of H. pylori eradication treatment in low-grade gastric MALT lymphoma. Gastroenterology 2001; 120: 1884–1885.

    Article  CAS  PubMed  Google Scholar 

  70. Nakamura T, Inagaki H, Seto M, Nakamura S . Gastric lowgrade B-cell MALT lymphoma: treatment, response, and genetic alteration. J Gastroenterol 2003; 38: 921–929.

    Article  PubMed  Google Scholar 

  71. Costanzo A, Guiet C, Vito P . c-E10 is a caspase-recruiting domain-containing protein that interacts with components of death receptors signaling pathway and activates nuclear factor-kappaB. J Biol Chem 1999; 274: 20127–20132.

    Article  CAS  PubMed  Google Scholar 

  72. Koseki T, Inohara N, Chen S, Carrio R, Merino J, Hottiger MO et al. CIPER, a novel NF kappaB-activating protein containing a caspase recruitment domain with homology to herpesvirus-2 protein E10. J Biol Chem 1999; 274: 9955–9961.

    Article  CAS  PubMed  Google Scholar 

  73. Thome M, Martinon F, Hofmann K, Rubio V, Steiner V, Schneider P et al. Equine herpesvirus-2 E10 gene product, but not its cellular homologue, activates NF-kappaB transcription factor and c-Jun N-terminal kinase. J Biol Chem 1999; 274: 9962–9968.

    Article  CAS  PubMed  Google Scholar 

  74. Yan M, Lee J, Schilbach S, Goddard A, Dixit V . mE10,a novel caspase recruitment domain-containing proapoptotic molecule. J Biol Chem 1999; 274: 10287–10292.

    Article  CAS  PubMed  Google Scholar 

  75. Hofmann K, Bucher P, Tschopp J . The CARD domain: a new apoptotic signalling motif. Trends Biochem Sci 1997; 22: 155–156.

    Article  CAS  PubMed  Google Scholar 

  76. Tian MT, Gonzalez G, Scheer B, Defranco AL . Bcl10 can promote survival of antigen-stimulated B lymphocytes. Blood 2005; 106: 2105–2112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yoneda T, Imaizumi K, Maeda M, Yui D, Manabe T, Katayama T et al. Regulatory mechanisms of TRAF2-mediated signal transduction by Bcl10, a MALT lymphoma-associated protein. J Biol Chem 2000; 275: 11114–11120.

    Article  CAS  PubMed  Google Scholar 

  78. Macintyre E, Willerford D, Morris SW . Non-Hodgkin's lymphoma: molecular features of B cell lymphoma. Hematology (Am Soc Hematol Educ Program) 2000, 180–204.

  79. Ye H, Dogan A, Karran L, Willis TG, Chen L, Wlodarska I et al. BCL10 expression in normal and neoplastic lymphoid tissue: nuclear localization in MALT lymphoma. Am J Pathol 2000; 157: 1147–1154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liu H, Ye H, Dogan A, Ranaldi R, Hamoudi RA, Bearzi I et al. T(11;18)(q21;q21) is associated with advanced mucosa-associated lymphoid tissue lymphoma that expresses nuclear BCL10. Blood 2001; 98: 1182–1187.

    Article  CAS  PubMed  Google Scholar 

  81. Maes B, Demunter A, Peeters B, De Wolf-Peeters C . BCL10 mutation does not represent an important pathogenic mechanism in gastric MALT-type lymphoma, and the presence of the API2-MLT fusion is associated with aberrant nuclear BCL10 expression. Blood 2002; 99: 1398–1404.

    Article  CAS  PubMed  Google Scholar 

  82. Ye H, Liu H, Raderer M, Chott A, Ruskone-Fourmestraux A, Wotherspoon A et al. High incidence of t(11;18)(q21;q21) in Helicobacter pylori-negative gastric MALT lymphoma. Blood 2003; 101: 2547–2550.

    Article  CAS  PubMed  Google Scholar 

  83. Sanchez-Izquierdo D, Buchonnet G, Siebert R, Gascoyne RD, Climent J, Karran L et al. MALT1 is deregulated by both chromosomal translocation and amplification in B-cell non-Hodgkin lymphoma. Blood 2003; 101: 4539–4546.

    Article  CAS  PubMed  Google Scholar 

  84. Streubel B, Lamprecht A, Dierlamm J, Cerroni L, Stolte M, Ott G et al. t(14;18)(q32;q21) involving IGH and MALT1 is a frequent chromosomal aberration in MALT lymphoma. Blood 2003; 101: 2335–2339.

    Article  CAS  PubMed  Google Scholar 

  85. Greiner A, Knorr C, Qin Y, Schultz A, Marx A, Kroczek RA et al. CD40 ligand and autoantigen are involved in the pathogenesis of low-grade B-cell lymphomas of mucosa-associated lymphoid tissue. Dev Immunol 1998; 6: 187–196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Knorr C, Amrehn C, Seeberger H, Rosenwald A, Stilgenbauer S, Ott G et al. Expression of costimulatory molecules in low-grade mucosa-associated lymphoid tissue-type lymphomas in vivo. Am J Pathol 1999; 155: 2019–2027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. de Jong D, Vyth-Dreese F, Dellemijn T, Verra N, Ruskone-Fourmestraux A, Lavergne-Slove A et al. Histological and immunological parameters to predict treatment outcome of Helicobacter pylori eradication in low-grade gastric MALT lymphoma. J Pathol 2001; 193: 318–324.

    Article  CAS  PubMed  Google Scholar 

  88. Ho L, Davis RE, Conne B, Chappuis R, Berczy M, Mhawech P et al. MALT1 and the API2-MALT1 fusion act between CD40 and IKK and confer NF-kappa B-dependent proliferative advantage and resistance against FAS-induced cell death in B cells. Blood 2005; 105: 2819–2891.

    Article  CAS  Google Scholar 

  89. Li Q, Verma IM . NF-kappaB regulation in the immune system. Nat Rev Immunol 2002; 2: 725–734.

    Article  CAS  PubMed  Google Scholar 

  90. Chen LF, Greene WC . Shaping the nuclear action of NF-kappaB. Nat Rev Mol Cell Biol 2004; 5: 392–401.

    Article  CAS  PubMed  Google Scholar 

  91. Siebenlist U, Brown K, Claudio E . Control of lymphocyte development by nuclear factor-kappaB. Nat Rev Immunol 2005; 5: 435–445.

    Article  CAS  PubMed  Google Scholar 

  92. Ghosh S, Karin M . Missing pieces in the NF-kappaB puzzle. Cell 2002; 109 (Suppl): S81–S96.

    Article  CAS  PubMed  Google Scholar 

  93. Pomerantz JL, Baltimore D . Two pathways to NF-kappaB. Mol Cell 2002; 10: 693–695.

    Article  CAS  PubMed  Google Scholar 

  94. Coope HJ, Atkinson PG, Huhse B, Belich M, Janzen J, Holman MJ et al. CD40 regulates the processing of NF-kappaB2 p100 to p52. EMBO J 2002; 21: 5375–5385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gaide O, Martinon F, Micheau O, Bonnet D, Thome M, Tschopp J . Carma1, a CARD-containing binding partner of Bcl10, induces Bcl10 phosphorylation and NF-kappaB activation. FEBS Lett 2001; 496: 121–127.

    Article  CAS  PubMed  Google Scholar 

  96. Bertin J, Wang L, Guo Y, Jacobson MD, Poyet JL, Srinivasula SM et al. CARD11 and CARD14 are novel caspase recruitment domain (CARD)/membrane-associated guanylate kinase (MAGUK) family members that interact with BCL10 and activate NF-kappa B. J Biol Chem 2001; 276: 11877–11882.

    Article  CAS  PubMed  Google Scholar 

  97. McAllister-Lucas LM, Inohara N, Lucas PC, Ruland J, Benito A, Li Q et al. Bimp1, a MAGUK family member linking protein kinase C activation to Bcl10-mediated NF-kappaB induction. J Biol Chem 2001; 276: 30589–30597.

    Article  CAS  PubMed  Google Scholar 

  98. Wang D, You Y, Case SM, McAllister-Lucas LM, Wang L, DiStefano PS et al. A requirement for CARMA1 in TCR-induced NF-kappa B activation. Nat Immunol 2002; 3: 830–835.

    Article  CAS  PubMed  Google Scholar 

  99. Gaide O, Favier B, Legler DF, Bonnet D, Brissoni B, Valitutti S et al. CARMA1 is a critical lipid raft-associated regulator of TCR-induced NF-kappa B activation. Nat Immunol 2002; 3: 836–843.

    Article  CAS  PubMed  Google Scholar 

  100. Jun JE, Wilson LE, Vinuesa CG, Lesage S, Blery M, Miosge LA et al. Identifying the MAGUK protein Carma-1 as a central regulator of humoral immune responses and atopy by genome-wide mouse mutagenesis. Immunity 2003; 18: 751–762.

    Article  CAS  PubMed  Google Scholar 

  101. Egawa T, Albrecht B, Favier B, Sunshine MJ, Mirchandani K, O'Brien W et al. Requirement for CARMA1 in antigen receptor-induced NF-kappa B activation and lymphocyte proliferation. Curr Biol 2003; 13: 1252–1258.

    Article  CAS  PubMed  Google Scholar 

  102. Hara H, Wada T, Bakal C, Kozieradzki I, Suzuki S, Suzuki N et al. The MAGUK family protein CARD11 is essential for lymphocyte activation. Immunity 2003; 18: 763–775.

    Article  CAS  PubMed  Google Scholar 

  103. Newton K, Dixit VM . Mice lacking the CARD of CARMA1 exhibit defective B lymphocyte development and impaired proliferation of their B and T lymphocytes. Curr Biol 2003; 13: 1247–1251.

    Article  CAS  PubMed  Google Scholar 

  104. Zhou H, Wertz I, O'Rourke K, Ultsch M, Seshagiri S, Eby M et al. Bcl10 activates the NF-kappaB pathway through ubiquitination of NEMO. Nature 2004; 427: 167–171.

    Article  CAS  PubMed  Google Scholar 

  105. Sun L, Deng L, Ea CK, Xia ZP, Chen ZJ . The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol Cell 2004; 14: 289–301.

    Article  CAS  PubMed  Google Scholar 

  106. Zhou H, Du MQ, Dixit VM . Constitutive NF-kappaB activation by the t(11;18)(q21;q21) product in MALT lymphoma is linked to deregulated ubiquitin ligase activity. Cancer Cell 2005; 7: 425–431.

    Article  CAS  PubMed  Google Scholar 

  107. Hosokawa Y, Suzuki H, Suzuki Y, Takahashi R, Seto M . Antiapoptotic function of apoptosis inhibitor 2-MALT1 fusion protein involved in t(11;18)(q21;q21) mucosa-associated lymphoid tissue lymphoma. Cancer Res 2004; 64: 3452–3457.

    Article  CAS  PubMed  Google Scholar 

  108. Du C, Fang M, Li Y, Li L, Wang X . Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 2000; 102: 33–42.

    Article  CAS  PubMed  Google Scholar 

  109. Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 2000; 102: 43–53.

    Article  CAS  PubMed  Google Scholar 

  110. Mayo MW, Baldwin AS . The transcription factor NF-kappaB: control of oncogenesis and cancer therapy resistance. Biochim Biophys Acta 2000; 1470: M55–M62.

    CAS  PubMed  Google Scholar 

  111. Hosokawa Y, Suzuki H, Nakagawa M, Lee TH, Seto M . API2-MALT1 fusion protein induces transcriptional activation of the API2 gene through NF-kappaB binding elements: evidence for a positive feed-back loop pathway resulting in unremitting NF-kappaB activation. Biochem Biophys Res Commun 2005; 334: 51–60.

    Article  CAS  PubMed  Google Scholar 

  112. Stoffel A, Chaurushiya M, Singh B, Levine AJ . Activation of NF-kappaB and inhibition of p53-mediated apoptosis by API2/mucosa-associated lymphoid tissue 1 fusions promote oncogenesis. Proc Natl Acad Sci USA 2004; 101: 9079–9084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nakagawa M, Hosokawa Y, Yonezumi M, Izumiyama K, Suzuki R, Tsuzuki S et al. MALT1 contains nuclear export signals and regulates cytoplasmic localization of BCL10. Blood 2005; 106: 4210–4216.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Grant-in-Aid for the Second-Term Comprehensive 10-year Strategy for Cancer Control from the Japan Ministry of Health, Labor and Welfare and a Grant-in-aid for Science on Primary Areas (Cancer Research) from the Japan Ministry of Education, Culture, Sports, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Hosokawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakagawa, M., Seto, M. & Hosokawa, Y. Molecular pathogenesis of MALT lymphoma: two signaling pathways underlying the antiapoptotic effect of API2-MALT1 fusion protein. Leukemia 20, 929–936 (2006). https://doi.org/10.1038/sj.leu.2404192

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404192

Keywords

This article is cited by

Search

Quick links