Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Association of the dopamine transporter (DAT1) 10/10-repeat genotype with ADHD symptoms and response inhibition in a general population sample

Abstract

Association between attention-deficit hyperactivity disorder (ADHD) and the 10-repeat allele of the dopamine transporter gene (DAT1) has been reported in independent clinical samples using a categorical clinical definition of ADHD. The present study adopts a quantitative trait loci (QTL) approach to examine the association between DAT1 and a continuous measure of ADHD behaviours in a general-population sample, as well as to explore whether there is an independent association between DAT1 and performance on neuropsychological tests of attention, response inhibition, and working memory. From an epidemiological sample of 872 boys aged 6–11 years, we recruited 58 boys scoring above the 90th percentile for teacher reported ADHD symptoms (SWAN ADHD scale) and 68 boys scoring below 10th percentile for genotyping and neuropsychological testing. A significant association was found between the DAT1 homozygous 10/10-repeat genotype and high-scoring boys (χ2square=4.6, P<0.03; odds ratio=2.4, 95% CI 1.1–5.0). Using hierarchical linear regression, a significant independent association was found between the DAT1 10/10-repeat genotype and measures of selective attention and response inhibition after adjusting for age, IQ, and ADHD symptoms. There was no association between DAT1 and any component of working memory. Furthermore, performance on tasks of selective attention although associated with DAT1 was not associated with SWAN ADHD high scores after controlling for age and IQ. In contrast, impairment on tasks that tapped sustained attention and the central executive component of working memory were found in high-scoring boys after adjusting for age and IQ. The results suggest that DAT1 is a QTL for continuously distributed ADHD behaviours in the general population and the cognitive endophenotype of response inhibition.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Brown RT, Freeman WS, Perrin JM, Stein MT, Amler RW, Feldman HM et al. Prevalence and assessment of attention-deficit/hyperactivity disorder in primary care settings. Pediatrics 2001; 107: E43.

    Article  CAS  PubMed  Google Scholar 

  2. Leung PWL, Luk SL, How TP, Taylor E, Mak FL, Bacon-Shone J . The diagnosis and prevalence of hyperactivity in Chinese schoolboys. Br J Psychiatry 1996; 168: 486–496.

    Article  CAS  PubMed  Google Scholar 

  3. Wang YC, Chong MY, Chou WJ, Yang JL . Prevalence of attention deficit hyperactivity disorder in primary school children in Taiwan. J Formos Med Assoc 1993; 92: 133–138.

    CAS  PubMed  Google Scholar 

  4. Biederman J, Milberger S, Faraone SV, Kiely K, Guite J, Mick E et al. Family-environment risk factors for attention-deficit hyperactivity disorder. A test of Rutter's indicators of adversity. Arch Gen Psychiatry 1995; 52: 464–470.

    Article  CAS  PubMed  Google Scholar 

  5. Faraone SV, Biederman J, Milberger S . An exploratory study of ADHD among second-degree relatives of ADHD children. Biol Psychiatry 1994; 35: 398–402.

    Article  CAS  PubMed  Google Scholar 

  6. Gillis JJ, Gilger JW, Pennington BF, DeFries JC . Attention deficit disorder in reading-disabled twins: evidence for a genetic etiology. J Abnorm Child Psychol 1992; 20: 303–315.

    Article  CAS  PubMed  Google Scholar 

  7. Hay DA, McStephen M, Levy F . The developmental genetics of ADHD. In: Levy F, Hay D (eds). Attention Genes and ADHD. Brunner-Routledge: East Sussex, 2001.

    Google Scholar 

  8. Stevenson J . Evidence for a genetic etiology in hyperactivity in children. Behav Genet 1992; 22: 337–344.

    Article  CAS  PubMed  Google Scholar 

  9. Thapar A, Hervas A, McGuffin P . Childhood hyperactivity scores are highly heritable and show sibling competition effects: twin study evidence. Behav Genet 1995; 25: 537–544.

    Article  CAS  PubMed  Google Scholar 

  10. Thapar A, Holmes J, Poulton K, Harrington R . Genetic basis of attention deficit and hyperactivity. Br J Psychiatry 1999; 174: 105–111.

    Article  CAS  PubMed  Google Scholar 

  11. Levy F, Hay DA, McStephen M, Wood C, Waldman I . Attention-deficit hyperactivity disorder: a category or a continuum? Genetic analysis of a large-scale twin study. J Am Acad Child Adolesc Psychiatry 1997; 36: 737–744.

    Article  CAS  PubMed  Google Scholar 

  12. Fisher SE, Francks C, McCracken JT, McGough JJ, Marlow AJ, MacPhie IL et al. A genomewide scan for loci involved in attention-deficit/hyperactivity disorder. Am J Hum Genet 2002; 70: 1183–1196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Grady DL, Chi HC, Ding YC, Smith M, Wang E, Schuck S et al. High prevalence of rare dopamine receptor D4 alleles in children diagnosed with attention-deficit hyperactivity disorder. Mol Psychiatry 2003; 8: 536–545.

    Article  CAS  PubMed  Google Scholar 

  14. Giros B, Mestikawy S, Godinot N, Zheng K, Han H, Yang-Feng T et al. Cloning, pharmacological characterization, and chromosome assignment of the human dopamine transporter. Mol Pharmacol 1992; 42: 383–390.

    CAS  PubMed  Google Scholar 

  15. Vandenbergh DJ, Persico AM, Hawkins AL, Griffin CA, Li X, Jabs EW et al. Human dopamine transporter gene maps to chromosome 5p15.3 and displays a VNTR. Genomics 1992; 14: 1104–1106.

    Article  CAS  PubMed  Google Scholar 

  16. Kang AM, Palmatier MA, Kidd KK . Global variation of a 40-bp VNTR in the 3′-untranslated region of the dopamine transporter gene (SLC6A3). Biol Psychiatry 1999; 46: 151–160.

    Article  CAS  PubMed  Google Scholar 

  17. Mitchell RJ, Howlett S, Earl L, White NG, McComb J, Schanfield MS et al. Distribution of the 3′ VNTR polymorphism in the human dopamine transporter gene in world populations. Hum Biol 2000; 72: 295–304.

    CAS  PubMed  Google Scholar 

  18. Chen CK, Chen SL, Mill J, Huang YS, Lin SK, Curran S et al. The dopamine transporter gene is associated with attention deficit hyperactivity disorder in a Taiwanese sample. Mol Psychiatry 2003; 8: 393–396.

    Article  CAS  PubMed  Google Scholar 

  19. Curran S, Mill J, Tahir E, Kent L, Richards S, Gould A et al. Association study of a dopamine transporter polymorphism and attention deficit hyperactivity disorder in UK and Turkish samples. Mol Psychiatry 2001; 6: 425–428.

    Article  CAS  PubMed  Google Scholar 

  20. Daly G, Hawi Z, Fitzgerald M, Gill M . Mapping susceptibility loci in attention deficit hyperactivity disorder: preferential transmission of parental alleles at DAT1, DBH and DRD5 to affected children. Mol Psychiatry 1999; 4: 192–196.

    Article  CAS  PubMed  Google Scholar 

  21. Gill M, Daly G, Heron S, Hawi Z, Fitzgerald M . Confirmation of association between attention deficit hyperactivity disorder and a dopamine transporter polymorphism. Mol Psychiatry 1997; 2: 311–313.

    Article  CAS  PubMed  Google Scholar 

  22. Barr CL, Xu C, Kroft J, Feng Y, Wigg K, Zai G et al. Haplotype study of three polymorphisms at the dopamine transporter locus confirm linkage to attention-deficit/hyperactivity disorder. Biol Psychiatry 2001; 49: 333–339.

    Article  CAS  PubMed  Google Scholar 

  23. Waldman ID, Rowe DC, AbrInteamowitz S, Kozel T, Mohr JH, Sherman L et al. Association and linkage of the dopamine transporter gene and attention-deficit hyperactivity disorder in children: heterogeneity owing to diagnostic subtype and severity. Am J Hum Genet 1998; 63: 1767–1776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cook EH, Stein MA, Krasowski MD, Cox NJ, Olkon DM, Kieffer JE et al. Association of attention-deficit disorder and the dopamine transporter gene. Am J Hum Genet 1995; 56: 993–998.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Asherson P, Virdee V, Curran S, Ebersole L, Freeman B, Craig I et al. Association study of DSM IV attention-deficit hyperactivity disorder (ADHD) and monoamine pathway genes [Abstract]. Am J Med Genet 1998; 81: 549.

    Google Scholar 

  26. Holmes J, Payton A, Barrett JH, Hever T, Fitzpatrick H, Trumper AL et al. A family-based and case control association study of the dopamine D4 receptor gene and dopamine transporter gene in attention deficit hyperactivity disorder. Mol Psychiatry 2000; 5: 523–530.

    Article  CAS  PubMed  Google Scholar 

  27. Palmer CGS, Bailey JN, Ramsey C, Cantwell D, Sinsheimer JS, Del'Homme M et al. No evidence of linkage or linkage disequilibrium between DAT1 and attention deficit hyperactivity disorder in a large sample. Psychiatr Genet 1999; 9: 157–160.

    Article  CAS  PubMed  Google Scholar 

  28. Roman T, Schmitz M, Polanczyk G, Eizirik M, Rohde LA, Hutz MH . Attention-deficit hyperactivity disorder: a study of association with both the dopamine transporter gene and the dopamine D4 receptor gene. Am J Med Genet 2001; 105: 471–478.

    Article  CAS  PubMed  Google Scholar 

  29. Todd RD, Jong Y-JI, Lobos EA, Reich W, Heath AC, Neuman RJ . No association of the dopamine transporter gene 3′ VNTR polymorphism with ADHD subtypes in a population sample of twins. Am J Med Genet 2001; 105: 745–748.

    Article  CAS  PubMed  Google Scholar 

  30. Mill J, Asherson P, Browes C, D'Souza U, Craig I . Expression of the dopamine transporter gene is regulated by the 3′ UTR VNTR: evidence from brain and lymphocytes using quantitative RT-PCR. Am J Med Genet 2002; 114: 975–979.

    Article  PubMed  Google Scholar 

  31. Fuke S, Suo S, Takahashi N, Koike H, Sasagawa N, Ishiura S . The VNTR polymorphism of the human dopamine transporter (DAT1) gene affects gene expression. Pharmacogenom J 2001; 1: 152–156.

    Article  CAS  Google Scholar 

  32. Miller GM, Madras BK . Polymorphisms in the 3′-untranslated region of human and monkey dopamine transporter genes affect reporter gene expression. Mol Psychiatry 2002; 7: 44–55.

    Article  CAS  PubMed  Google Scholar 

  33. Loo SK, Specter E, Smolen A, Hopfer C, Teale PD, Reite ML . Functional effects of the DAT1 polymorphism on EEG measures in ADHD. J Am Acad Child Adolesc Psychiatry 2003; 42: 986–993.

    Article  PubMed  Google Scholar 

  34. Durston S . Combining neuroimaging and genetic approaches to understanding ADHD. Data presented at the Annual Meeting of the Cognitive Neuroscience Society, San Francisco, April and the European Network for Hyperkinetic Disorders (Eunethydis), Oslo, September/October, 2004.

  35. Roman T, Szobot C, Martins S, Biederman J, Rohde L, Hutz M . Dopamine transporter gene and methylphenidate response in attention deficit/hyperactivity disorder. Pharmacogenetics 2002; 12: 492–499.

    Article  Google Scholar 

  36. Castellanos FX, Tannock R . Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nat Rev Neurosci 2002; 3: 617–628.

    Article  CAS  PubMed  Google Scholar 

  37. Pennington BF, Ozonoff S . Executive functions and developmental psychopathology. J Child Psychol Psychiatry 1996; 37: 51–87.

    Article  CAS  PubMed  Google Scholar 

  38. Sergeant JA, Geurts H, Oosterlaan J . How specific is a deficit of executive functioning for attention-deficit/hyperactivity disorder? Behav Brain Res 2002; 130: 3–28.

    Article  PubMed  Google Scholar 

  39. Sergeant J . From DSM-III attentional deficit disorder to functional defects. In: Bloomingdale LM, Sergeant J (eds). Attention Deficit Disorder: Criteria, Cognition, Intervention. Pergamon Press: Oxford, UK, 1988, pp 183–198.

    Google Scholar 

  40. Chee P, Logan G, Schachar R, Lindsay P, Wachsmith R . Effects of event rate and display time on sustained attention in hyperactive, normal and control children. J Abnorm Child Psychol 1989; 17: 371–391.

    Article  CAS  PubMed  Google Scholar 

  41. Horn WF, Wagner AE, Ialongo N . Sex differences in school age children with pervasive attention deficit hyperactivity disorder. J Abnorm Child Psychol 1989; 17: 109–125.

    Article  CAS  PubMed  Google Scholar 

  42. Manly T, Anderson V, Nimmo-Smith I, Turner A, Watson PC, Robertson IH . The differential assessment of children's attention: the Test of Everyday Attention for Children (TEA-Ch), normative sample and ADHD performance. J Child Psychol Psychiatry 2001; 42: 1065–1081.

    Article  CAS  PubMed  Google Scholar 

  43. Nigg J, Hinshaw SP, Halperin JM . Continuous Performance Test in boys with attention deficit hyperactivity disorder: methylphenidate does response and relations with observed behaviours. J Clin Child Psychol 1996; 25: 330–340.

    Article  Google Scholar 

  44. Soo C, Bailey J . Attentional functioning in children with DSM-IV subtypes of attention deficit hyperactivity disorder (ADHD) and learning disabilities (LD): an analysis of components [Abstract]. Arch Clin Neuropsychol 2003; 18: 706.

    Google Scholar 

  45. Willcutt E, Pennington BF, Boada R, Ongline JS, Tunick RA, Chhabildas NA et al. A comparison of cognitive deficits in reading disability and attention deficit/hyperactivity disorder. J Abnorm Psychol 2001; 110: 157–172.

    Article  CAS  PubMed  Google Scholar 

  46. Wu KK, Anderson V, Castiello U . Neuropsychological evaluation of deficits in executive functioning for ADHD children with or without learning disabilities. Dev Neuropsychol 2002; 22: 501–531.

    Article  PubMed  Google Scholar 

  47. Rubia K, Taylor E, Smith AB, Oksannen H, Overmeyer S, Newman S . Neuropsychological analyses of impulsiveness in childhood hyperactivity. Br J Psychiatry 2001; 179: 138–143.

    Article  CAS  PubMed  Google Scholar 

  48. Sonuga-Barke EJ . Psychological heterogeneity in AD/HD—a dual pathway model of behaviour and cognition. Behav Brain Res 2002; 130: 29–36.

    Article  PubMed  Google Scholar 

  49. Kuntsi J, Oosterlaan J, Stevenson J . Psychological mechanisms in hyperactivity: I. Response inhibition deficit, working memory impairment, delay aversion, or something else? J Child Psychol Psychiatry 2001; 42: 199–210.

    Article  CAS  PubMed  Google Scholar 

  50. Sergeant JA, Geurts H, Huijbregts S, Scheres A, Oosterlaan J . The top and the bottom of ADHD: a neuropsychological perspective. Neurosci Biobehav Rev 2003; 27: 583–592.

    Article  PubMed  Google Scholar 

  51. Lou HC . Etiology and pathogenesis of attention-deficit hyperactivity disorder (ADHD): significance of prematurity and perinatal hypoxic-haemodoynamic encephalopathy. Acta Paediatr 1996; 85: 1266–1271.

    Article  CAS  PubMed  Google Scholar 

  52. Barkley RA . Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull 1997; 121: 65–94.

    Article  PubMed  Google Scholar 

  53. Kempton S, Vance A, Maruff P, Luk E, Costin J, Pantelis C . Executive function and attention deficit hyperactivity disorder: stimulant medication and better executive function performance in children. Psychol Med 1999; 29: 527–538.

    Article  CAS  PubMed  Google Scholar 

  54. Kerns KA, McInerney RJ, Wilde NJ . Time reproduction, working memory, and behavioral inhibition in children with ADHD. Neuropsychol Dev Cogn Sect C Child Neuropsychol 2001; 7: 21–31.

    CAS  Google Scholar 

  55. Sonuga-Barke EJ, Dalen L, Daley D, Remington B . Are planning, working memory, and inhibition associated with individual differences in preschool ADHD symptoms? Dev Neuropsychol 2002; 21: 255–272.

    Article  PubMed  Google Scholar 

  56. Elliott R, Sahakian BJ, Matthews K, Bannerjea A, Rimmer J, Robbins TW . Effects of methylphenidate on spatial working memory and planning in healthy young adults. Psychopharmacology (Berl) 1997; 131: 196–206.

    Article  CAS  Google Scholar 

  57. Swaguchi T . The effects of dopamine and its agonists on directional delay-period activity of prefrontal neurons in monkeys during an oculomotor delayed-response task. Neurosci Res 2001; 41: 115–128.

    Article  Google Scholar 

  58. Egan Mf, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE et al. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA 2001; 98: 6917–6922.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Swanson J, McStephen M, Hay D, Levy F . The potential of the SWAN rating scale in the genetic analysis of ADHD. Poster at the International Society for Research in Child and Adolescent Psychiatry (10th Scientific Meeting, Vancouver, BC), 2001.

  60. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-IV. American Psychiatric Press: Washington, DC, 1994.

  61. Swanson JM . School-Based Assessments and Interventions for ADD Students. KC Publishing: Irvine, CA, 1992.

    Google Scholar 

  62. Van Gestel S, Houwing-Duistermaat JJ, Adolfsson R, van Duijn CM, Van Broeckhoven C . Power of selective genotyping in genetic association analyses of quantitative traits. Behav Genet 2000; 30: 141–146.

    Article  CAS  PubMed  Google Scholar 

  63. Conners CK . Conners' Rating Scales—Revised: Technical Manual. Multi-Health Systems: North Tonawanda, New York, 1997.

    Google Scholar 

  64. Conners CK, Sitarenios G, Parker JD, Epstein JN . Revision and restandardization of the Conners' Teacher Rating Scale (CTRS-R): factor structure, reliability, and criterion validity. J Abnorm Child Psychol 1998; 26: 279–291.

    Article  CAS  PubMed  Google Scholar 

  65. Conners CK, Sitarenios G, Parker JD, Epstein JN . The revised Conners' Parent Rating Scale (CPRS-R): factor structure, reliability and criterion validity. J Abnorm Child Psychol 1998; 4: 257–268.

    Article  Google Scholar 

  66. Ferrie RM, Schwarz MJ, Robertson NH, Vaudin S, Super M, Malone G et al. Development, multiplexing, and application of ARMS tests for common mutations in the CFTR gene. Am J Hum Genet 1992; 51: 251–262.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Wechsler D . Wechsler Abbreviated Scale of Intelligence. The Psychological Corporation: London, UK, 1999.

    Google Scholar 

  68. Manly T, Robertson IH, Anderson V, Nimmo-Smith I . Test of Everyday Attention for Children (TEA-Ch). Thames Valley Test Company: Bury St Edmunds, 1999.

    Google Scholar 

  69. Pickering SJ, Gathercole SE . The Working Memory Test Battery for Children. The Psychological Corporation: London, 2001.

    Google Scholar 

  70. Pardo JV, Fox PT, Raichle ME . Localization of a human system for sustained attention by positron emission tomography. Nature 1991; 349: 61–64.

    Article  CAS  PubMed  Google Scholar 

  71. Robertson IH, Ward A, Ridgeway V, Nimmo-Smith I . The structure of normal human attention: the Test of Everyday Attention. J Int Neuropsychol Soc 1996; 2: 525–534.

    Article  CAS  PubMed  Google Scholar 

  72. Wilkins AJ, Shallice T, McCarthy R . Frontal lesions and sustained attention. Neuropsychologia 1987; 25: 359–365.

    Article  CAS  PubMed  Google Scholar 

  73. Manly T, Davison B, Heutink J, Galloway M, Robertson I . Not enough time or not enough attention?: speed, error and self-maintained control in the Sustained Attention to Response Test (SART). Clin Neuropsychol Assess 2000; 3: 167–177.

    Google Scholar 

  74. Robertson IH, Manly T, Andrade J, Baddeley BT, Yiend J . ‘Oops!’: performance correlates of everyday attentional failures in traumatic brain injured and normal subjects. Neuropsychologia 1997; 35: 747–758.

    Article  CAS  PubMed  Google Scholar 

  75. Heaton SC, Reader SK, Preston AS, Fennell EB, Puyana OE, Gill N : et al. The Test of Everyday Attention for Children (TEA-Ch): patterns of performance in children with ADHD and clinical controls. Child Neuropsychol 2001; 7: 251–264.

    Article  CAS  PubMed  Google Scholar 

  76. Barkley RA . Response inhibition in attention-deficit hyperactivity disorder. Ment Retard Dev Disabil Res Rev 1999; 5: 177–184.

    Article  Google Scholar 

  77. Gerstadt CL, Hong YJ, Diamond A . The relationship between cognition and action: performance of children 2–7 years old on a Stroop-like day–night test. Cognition 1994; 53: 129–153.

    Article  CAS  PubMed  Google Scholar 

  78. Passler MA, Isaac W, Hynd GW . Neuropsychological development of behaviour attributed to frontal lobe functioning in children. Dev Neuropsychol 1985; 1: 349–370.

    Article  Google Scholar 

  79. Adams JW, Snowling MJ . Executive function and reading impairments in children reported by their teachers as ‘hyperactive’. Br J Dev Psychol 2001; 19: 293–306.

    Article  Google Scholar 

  80. Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K . Comprehensive review of genetic association studies. Genet Med 2002; 4: 45–61.

    Article  CAS  PubMed  Google Scholar 

  81. Nigg JT . Is ADHD a disinhibitory disorder? Psychol Bull 2001; 127: 571–598.

    Article  CAS  PubMed  Google Scholar 

  82. Crosbie J, Schachar R . Deficient inhibition as a marker for familial ADHD. Am J Psychiatry 2001; 158: 1884–1890.

    Article  CAS  PubMed  Google Scholar 

  83. Sagvolden T, Johansen EB, Aase H, Russell VA . A dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behav Brain Sci, (in press).

  84. Kuntsi J, Oosterlaan J, Stevenson J . Psychological mechanisms in hyperactivity: I Response inhibition deficit, working memory impairment, delay aversion, or something else? J Child Psychol Psychiatry 2001; 42: 199–210.

    Article  CAS  PubMed  Google Scholar 

  85. Sergeant JA, Geurts H, Huijbregts S, Scheres A, Oosterlaan J . The top and the bottom of ADHD: a neuropsychological perspective. Neurosci Biobehav Rev 2003; 27: 583–592.

    Article  PubMed  Google Scholar 

  86. Sergeant JA, Oosterlaan J, Van der Meere JJ . Information processing and energetic factors in attention-deficit/hyperactivity disorder. In: Quay HC, Hogan A (eds). Handbook of Disruptive Behavior Disorders. Plenum Press: New York, 1999, pp 75–104.

    Chapter  Google Scholar 

  87. Smith A, Taylor E, Rogers JW, Newman S, Rubia K . Evidence for a pure time perception deficit in children with ADHD. J Child Psychol Psychiatry 2002; 43: 529–542.

    Article  PubMed  Google Scholar 

  88. Mason DJ, Humphreys GW, Kent LS . Exploring selective attention in ADHD: visual search through space and time. J Child Psychol Psychiatry 2003; 44: 1158–1176.

    Article  PubMed  Google Scholar 

  89. van der Meere J, Sergeant J . Focused attention in pervasively hyperactive children. J Abnorm Child Psychol 1988; 16: 627–639.

    Article  CAS  PubMed  Google Scholar 

  90. Slaats-Willemse D, Swaab-Barneveld H, de Sonneville L, van der Meulen E, Buitelaar J . Deficient response inhibition as a cognitive endophenotype of ADHD. J Am Acad Child Adolesc Psychiatry 2003; 42: 1242–1248.

    Article  PubMed  Google Scholar 

  91. Malhotra AK, Kestler LJ, Mazzanti C, Bates JA, Goldberg T, Goldman D . A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition. Am J Psychiatry 2002; 159: 652–654.

    Article  PubMed  Google Scholar 

  92. Diamond A, Briand L, Fossella J, Gehlbach L . Genetic and neurocognitive modulation of prefrontal cognitive functions in children. Am J Psychiatry 2004; 161: 125–132.

    Article  PubMed  Google Scholar 

  93. Eisenberg J, Mei-Tal G, Steinberg A, Tartakovsky E, Zohar A, Gritsenko I et al. Haplotype relative risk study of catechol-O-methyltransferase (COMT) and attention deficit hyperactivity disorder (ADHD): association of the high-enzyme activity Val allele with ADHD impulsive-hyperactive phenotype. Am J Med Genet 1999; 88: 497–502.

    Article  CAS  PubMed  Google Scholar 

  94. Barr CL, Wigg K, Malone M, Schachar R, Tannock R, Roberts W et al. Linkage study of catechol-O-methyltransferase and attention-deficit hyperactivity disorder. Am J Med Genet 1999; 88: 710–713.

    Article  CAS  PubMed  Google Scholar 

  95. Hawi Z, Millar N, Daly G, Fitzgerald M, Gill M . No association between catechol-O-methyltransferase (COMT) gene polymorphism and attention deficit hyperactivity disorder (ADHD) in an Irish sample. Am J Med Genet 2000; 96: 282–284.

    Article  CAS  PubMed  Google Scholar 

  96. Tahir E, Curran S, Yazgan Y, Ozbay F, Cirakoglu B, Asherson PJ . No association between low- and high-activity catecholamine-methyl-transferase (COMT) and attention deficit hyperactivity disorder (ADHD) in a sample of Turkish children. Am J Med Genet 2000; 96: 285–288.

    Article  CAS  PubMed  Google Scholar 

  97. Langley K, Marshall L, Van Den Bree M, Thomas H, Owen M, O'Donovan M et al. Association of the dopamine d(4) receptor gene 7-repeat allele with neuropsychological test performance of children with ADHD. Am J Psychiatry 2004; 161: 133–138.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a project grant from the Sir Jules Thorn Charitable Trust, UK to C Hollis, K Cornish, G Cross, and N Butler. We express our thanks to the participating schools and students.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K M Cornish.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cornish, K., Manly, T., Savage, R. et al. Association of the dopamine transporter (DAT1) 10/10-repeat genotype with ADHD symptoms and response inhibition in a general population sample. Mol Psychiatry 10, 686–698 (2005). https://doi.org/10.1038/sj.mp.4001641

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001641

Keywords

This article is cited by

Search

Quick links