Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

p53, mutation frequency and apoptosis in the murine small intestine

Abstract

Normal function of the p53 gene is integral to the cellular response to genotoxic stress. One prediction arising from this is that p53 deficiency results in an increased mutation frequency. However, limited evidence has been produced in support of this idea. In order to further investigate the in vivo role of p53 in surveillance against mutation, and particularly to address the significance of p53-dependent apoptosis, we scored mutation frequency at the Dlb-1 locus within cells of the intestinal epithelium of animals which were wild type, heterozygous or null for p53 and heterozygous (a/b) at the Dlb-1 locus. Using this assay we have shown that loss of a p53-dependent apoptotic pathway is associated with the detectable acquisition of mutations, but only at high levels of DNA damage. These results question the significance of the immediate `wave' of p53-dependent apoptosis seen in this tissue, particularly as there was a delayed p53-independent apoptotic pathway. We conclude that loss of p53 function only becomes relevant to the in vivo acquisition of mutations and thus tumorigenesis in certain circumstances.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, A., Howard, L., Harrison, D. et al. p53, mutation frequency and apoptosis in the murine small intestine. Oncogene 14, 2015–2018 (1997). https://doi.org/10.1038/sj.onc.1201040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1201040

Keywords

This article is cited by

Search

Quick links