Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Involvement of programmed cell death 4 in transforming growth factor-β1-induced apoptosis in human hepatocellular carcinoma

Abstract

The programmed cell death 4 (PDCD4) gene was originally identified as a tumor-related gene in humans and acts as a tumor-suppressor in mouse epidermal carcinoma cells. However, its function and regulatory mechanisms of expression in human cancer remain to be elucidated. We therefore investigated the expression of PDCD4 in human hepatocellular carcinoma (HCC) and the role of PDCD4 in human HCC cells. Downregulation of PDCD4 protein was observed in all HCC tissues tested compared with corresponding noncancerous liver, as revealed by Western blotting or immunohistochemical staining. Human HCC cell line, Huh7, transfected with PDCD4 cDNA showed nuclear fragmentation and DNA laddering characteristic of apoptotic cells associated with mitochondrial changes and caspase activation. Transforming growth factor-β1 (TGF-β1) treatment of Huh7 cells resulted in increased PDCD4 expression and occurrence of apoptosis, also concomitant with mitochondrial events and caspase activation. Transfection of Smad7, a known antagonist to TGF-β1 signaling, protected cells from TGF-β1-mediated apoptosis and suppressed TGF-β1-induced PDCD4 expression. Moreover, antisense PDCD4 transfectants were resistant to apoptosis induced by TGF-β1. In conclusion, these data suggest that PDCD4 is a proapoptotic molecule involved in TGF-β1-induced apoptosis in human HCC cells, and a possible tumor suppressor in hepatocarcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Abbreviations

PDCD4:

programmed cell death 4

HCC:

hepatocellular carcinoma

TGF-β1:

transforming growth factor-β1

RT-PCR:

reverse transcription-polymerase chain reaction

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

References

  • Afonia O, Juste D, Das S, Matsuhashi S, Samuels HS . (2004). Oncogene 23: 8135–8145.

  • Akao Y, Otsuki Y, Kataoka S, Ito Y, Tsujimoto Y . (1994). Cancer Res 54: 2468–2471.

  • Aravind L, Koonin EV . (2000). Genome Res 10: 1172–1184.

  • Azzoni L, Zatsepina O, Abebe B, Bennett IM, Kanakaraj P, Perussia B . (1998). J Immunol 161: 3493–3500.

  • Bissell DM, Roulot D, George J . (2001). Hepatology 34: 859–867.

  • Bohm M, Sawicka K, Siebrasse JP, Brehmer-Fastnacht A, Peters R, Klempnauer KH . (2003). Oncogene 22: 4905–4910.

  • Buendia MA . (2000). Semin Cancer Biol 10: 185–200.

  • Chen Y, Knosel T, Kristiansen G, Pietas A, Garber ME, Matsuhashi S et al. (2003). J Pathol 200: 640–646.

  • Cmarik JL, Min H, Hegamyer G, Zhang S, Kulesz-Martin M, Yoshinaga H et al. (1999). Proc Natl Acad Sci 96: 14037–14042.

  • Fearon ER, Vogelstein B . (1990). Cell 61: 759–767.

  • Hanahan D, Weinberg RA . (2000). Cell 100: 57–70.

  • Horowitz J . (1999). Curr Opin Mol Ther 1: 500–509.

  • Huang JZ, Xia SS, Ye OF, Jiang HY, Chen ZH . (2003). World J Gastroenterol 9: 84–88.

  • Jang C-W, Chen C-H, Chen C-C, Chen J-Y, Su Y-H, Chen R-H . (2002). Nature Cell Biol 4: 51–58.

  • Jansen AP, Camalier CE, Colburn NH . (2005). Cancer Res 65: 6034–6041.

  • Jansen AP, Camalier CE, Stark C, Colburn NH . (2004). Mol Cancer Ther 3: 103–110.

  • Juriscova A, Latham KE, Casper RF, Varmuza SL . (1998). Mol Reprod Dev 51: 243–253.

  • Kang MJ, Ahn HS, Lee JY, Matsuhashi S, Park WY . (2002). Biochem Biophys Res Commun 293: 617–621.

  • Kitajima Y, Matsuhashi S, Nishida H, Takasaki Y, Takahashi I, Hisatsugu T et al. (1991). J Biochem 109: 544–550.

  • Kusano N, Shiraishi K, Kubo K, Oga A, Okita K, Sasaki K . (1999). Hepatology 29: 1858–1862.

  • Lankat-Buttgereit B, Göke R . (2003). Biol Cell 95: 515–519.

  • Matsuhashi S, Yoshinaga H, Yatsuki H, Tsugita A, Hori K . (1997). Res Commun Biochem Cell Mol Biol 1: 109–120.

  • Matsuzaki K, Date M, Furukawa F, Tahashi Y, Matsushita M, Sakitani K et al. (2000). Cancer Res 60: 1394–1402.

  • Musch A, Rabe C, Paik MD, Berna MJ, Schmitz V, Hoffman P et al. (2005). Digestion 71: 78–91.

  • Nagai H, Pineau P, Tiollais P, Buendia MA, Dejean A . (1997). Oncogene 14: 2927–2933.

  • Nakao A, Afrakhte M, Moren A, Nakayama T, Christian JL, Heuchel R et al. (1997). Nature 389: 631–635.

  • Onishi Y, Hashimoto S, Kizaki H . (1998). Gene 215: 453–459.

  • Ozaki I, Mizuta T, Zhao G, Yotsumoto H, Hara T, Kajihara S et al. (2000). Cancer Res 60: 6519–6525.

  • Ozturk M . (1999). Semin Liver Dis 19: 235–242.

  • Paik SY, Park YN, Kim H, Park C . (2003). Mod Pathol 16: 86–96.

  • Rider MA, Butz GM, Ricketts SL, Newberry ST, Grisham JW, Coleman WB . (2002). Int J Oncol 20: 235–245.

  • Schlichter U, Burk O, Worpenberg S, Klempnauer KH . (2001a). Oncogene 20: 231–239.

  • Schlichter U, Kattmann D, Appl H, Miethe J, Brehmer-Fastnacht A, Klempnauer KH . (2001b). Biochem Biophys Acta 1520: 99–104.

  • Shi Y, Massague J . (2003). Cell 113: 685–700.

  • Shibahara K, Asano M, Ishida Y, Aoki T, Koike T, Honjo T . (1995). Gene 166: 297–301.

  • Shima Y, Nakao K, Nakashima T, Kawakami A, Nakata K, Hamasaki K et al. (1999). Hepatology 30: 1215–1222.

  • Simmons HM, Ruis BL, Kapoor M, Hudacek AW, Conklin KF . (2005). Gene 347: 137–145.

  • Soejima H, Miyoshi O, Yoshinaga H, Masaki Z, Ozaki I, Kajihara S et al. (1999). Cytogenet Cell Genet 87: 113–114.

  • Suzuki A, Tsutomi Y, Yamamoto N, Shibutani T, Akahane K . (1999). Mol Cell Biol 19: 3842–3847.

  • Wieser R, Wrana JL, Massague J . (1995). EMBO J 14: 2199–2208.

  • Wong SF, Lai LC . (2001). Pathology 33: 85–92.

  • Yang HS, Cho MH, Zakowicz H, Hegamyer G, Sonenberg N, Colburn NH . (2004). Mol Cell Biol 24: 3894–3906.

  • Yang HS, Jansen AP, Komar AA, Zheng X, Merrick WC, Costes S et al. (2003b). Mol Cell Biol 23: 26–37.

  • Yang HS, Jansen AP, Nair R, Shibahara K, Verma AK, Cmarik JL et al. (2001). Oncogene 20: 669–676.

  • Yang HS, Knies JL, Stark C, Colburn NH . (2003a). Oncogene 22: 3712–3720.

  • Yoshinaga H, Matsuhashi S, Ahaneku J, Masaki Z, Hori K . (1997). Res Commun Biochem Cell Mol Biol 1: 121–131.

  • Yoshinaga H, Matsuhashi S, Fujiyama C, Masaki Z . (1999). Pathol Int 49: 1067–1077.

  • Young MR, Yang HS, Colburn NH . (2003). Trends Mol Med 9: 36–41.

  • Zhang H, Ozaki I, Mizuta T, Yoshimura T, Matsuhashi S, Eguchi Y et al. (2004). Cancer Sci 95: 878–886.

Download references

Acknowledgements

We thank Dr Heldin (Ludwig Institute for Cancer Research, Upsala, Sweden) for providing the Smad7 and TGF-β type I receptor expression plasmids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Ozaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Ozaki, I., Mizuta, T. et al. Involvement of programmed cell death 4 in transforming growth factor-β1-induced apoptosis in human hepatocellular carcinoma. Oncogene 25, 6101–6112 (2006). https://doi.org/10.1038/sj.onc.1209634

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209634

Keywords

This article is cited by

Search

Quick links