Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Activation of NF-κB by Akt upregulates Snail expression and induces epithelium mesenchyme transition

Abstract

Carcinoma progression is associated with the loss of epithelial features, and the acquisition of mesenchymal characteristics and invasive properties by tumour cells. The loss of cell–cell contacts may be the first step of the epithelium mesenchyme transition (EMT) and involves the functional inactivation of the cell–cell adhesion molecule E-cadherin. Repression of E-cadherin expression by the transcription factor Snail is a central event during the loss of epithelial phenotype. Akt kinase activation is frequent in human carcinomas, and Akt regulates various cellular mechanisms including EMT. Here, we show that Snail activation and consequent repression of E-cadherin may depend on AKT-mediated nuclear factor-κB (NF-κB) activation, and that NF-κB induces Snail expression. Expression of the NF-κB subunit p65 is sufficient for EMT induction, validating this signalling module during EMT. NF-κB pathway activation is associated with tumour progression and metastasis of several human tumour types; E-cadherin acts as a metastasis suppressor protein. Thus, this signalling and transcriptional network linking AKT, NF-κB, Snail and E-cadherin during EMT is a potential target for antimetastatic therapeutics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Arenzana-Seisdedos F, Fernandez B, Dominguez I, Jacque JM, Thomas D, Diaz-Meco MT et al. (1993). Phosphatidylcholine hydrolysis activates NF-kappa B and increases human immunodeficiency virus replication in human monocytes and T lymphocytes. J Virol 67: 6596–6604.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bachelder RE, Yoon SO, Franci C, de Herreros AG, Mercurio AM . (2005). Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: implications for the epithelial–mesenchymal transition. J Cell Biol 168: 29–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbera MJ, Puig I, Dominguez D, Julien-Grille S, Guaita-Esteruelas S, Peiro S et al. (2004). Regulation of Snail transcription during epithelial to mesenchymal transition of tumor cells. Oncogene 23: 7345–7354.

    Article  CAS  PubMed  Google Scholar 

  • Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J et al. (2000). The transcription factor Snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2: 84–89.

    Article  CAS  PubMed  Google Scholar 

  • Bellacosa A, Chan TO, Ahmed NN, Datta K, Malstrom S, Stokoe D et al. (1998). Akt activation by growth factors is a multiple-step process: the role of the PH domain. Oncogene 17: 313–325.

    Article  CAS  PubMed  Google Scholar 

  • Bellacosa A, Testa JR, Moore R, Larue L . (2004). A portrait of AKT kinases: human cancer and animal models depict a family with strong individualities. Cancer Biol Ther 3: 268–275.

    Article  CAS  PubMed  Google Scholar 

  • Berx G, Becker KF, Hofler H, van Roy F . (1998). Mutations of the human E-cadherin (CDH1) gene. Hum Mutat 12: 226–237.

    Article  CAS  PubMed  Google Scholar 

  • Birchmeier W, Behrens J . (1994). Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta 1198: 11–26.

    CAS  PubMed  Google Scholar 

  • Bolos V, Peinado H, Perez-Moreno MA, Fraga MF, Esteller M, Cano A . (2003). The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci 116: 499–511.

    Article  CAS  PubMed  Google Scholar 

  • Brockman JA, Scherer DC, McKinsey TA, Hall SM, Qi X, Lee WY et al. (1995). Coupling of a signal response domain in I kappa B alpha to multiple pathways for NF-kappa B activation. Mol Cell Biol 15: 2809–2818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS et al. (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96: 857–868.

    Article  CAS  PubMed  Google Scholar 

  • Budunova IV, Perez P, Vaden VR, Spiegelman VS, Slaga TJ, Jorcano JL . (1999). Increased expression of p50-NF-kappaB and constitutive activation of NF-kappaB transcription factors during mouse skin carcinogenesis. Oncogene 18: 7423–7431.

    Article  CAS  PubMed  Google Scholar 

  • Cabannes E, Khan G, Aillet F, Jarrett RF, Hay RT . (1999). Mutations in the IkBa gene in Hodgkin's disease suggest a tumour suppressor role for IkappaBalpha. Oncogene 18: 3063–3070.

    Article  CAS  PubMed  Google Scholar 

  • Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG et al. (2000). The transcription factor Snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2: 76–83.

    Article  CAS  PubMed  Google Scholar 

  • Christofori G, Semb H . (1999). The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene. Trends Biochem Sci 24: 73–76.

    Article  CAS  PubMed  Google Scholar 

  • Chua HL, Bhat-Nakshatri P, Clare SE, Morimiya A, Badve S, Nakshatri H . (2007). NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene 26: 711–724.

    Article  CAS  PubMed  Google Scholar 

  • Cogswell PC, Guttridge DC, Funkhouser WK, Baldwin Jr AS . (2000). Selective activation of NF-kappa B subunits in human breast cancer: potential roles for NF-kappa B2/p52 and for Bcl-3. Oncogene 19: 1123–1131.

    Article  CAS  PubMed  Google Scholar 

  • Cohen P, Frame S . (2001). The renaissance of GSK3. Nat Rev Mol Cell Biol 2: 769–776.

    Article  CAS  PubMed  Google Scholar 

  • Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E et al. (2001). The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7: 1267–1278.

    Article  CAS  PubMed  Google Scholar 

  • De Craene B, Gilbert B, Stove C, Bruyneel E, van Roy F, Berx G . (2005). The transcription factor Snail induces tumor cell invasion through modulation of the epithelial cell differentiation program. Cancer Res 65: 6237–6244.

    Article  CAS  PubMed  Google Scholar 

  • Du K, Montminy M . (1998). CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem 273: 32377–32379.

    Article  CAS  PubMed  Google Scholar 

  • Eger A, Aigner K, Sonderegger S, Dampier B, Oehler S, Schreiber M et al. (2005). DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 24: 2375–2385.

    Article  CAS  PubMed  Google Scholar 

  • Giroldi LA, Bringuier PP, de Weijert M, Jansen C, van Bokhoven A, Schalken JA . (1997). Role of E boxes in the repression of E-cadherin expression. Biochem Biophys Res Commun 241: 453–458.

    Article  CAS  PubMed  Google Scholar 

  • Grille SJ, Bellacosa A, Upson J, Klein-Szanto AJ, van Roy F, Lee-Kwon W et al. (2003). The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Cancer Res 63: 2172–2178.

    CAS  PubMed  Google Scholar 

  • Gritz L, Davies J . (1983). Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae. Gene 25: 179–188.

    Article  CAS  PubMed  Google Scholar 

  • Guaita S, Puig I, Franci C, Garrido M, Dominguez D, Batlle E et al. (2002). Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. J Biol Chem 277: 39209–39216.

    Article  CAS  PubMed  Google Scholar 

  • Gustin JA, Korgaonkar CK, Pincheira R, Li Q, Donner DB . (2006). Akt regulates basal and induced processing of NF-kappaB2 (p100) to p52. J Biol Chem 281: 16473–16481.

    Article  CAS  PubMed  Google Scholar 

  • Hajra KM, Chen DY, Fearon ER . (2002). The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 62: 1613–1618.

    CAS  PubMed  Google Scholar 

  • Hajra KM, Ji X, Fearon ER . (1999). Extinction of E-cadherin expression in breast cancer via a dominant repression pathway acting on proximal promoter elements. Oncogene 18: 7274–7279.

    Article  CAS  PubMed  Google Scholar 

  • Hennig G, Behrens J, Truss M, Frisch S, Reichmann E, Birchmeier W . (1995). Progression of carcinoma cells is associated with alterations in chromatin structure and factor binding at the E-cadherin promoter in vivo. Oncogene 11: 475–484.

    CAS  PubMed  Google Scholar 

  • Hennig G, Lowrick O, Birchmeier W, Behrens J . (1996). Mechanisms identified in the transcriptional control of epithelial gene expression. J Biol Chem 271: 595–602.

    Article  CAS  PubMed  Google Scholar 

  • Huber MA, Kraut N, Beug H . (2005). Molecular requirements for epithelial–mesenchymal transition during tumor progression. Curr Opin Cell Biol 17: 548–558.

    Article  CAS  PubMed  Google Scholar 

  • Irie HY, Pearline RV, Grueneberg D, Hsia M, Ravichandran P, Kothari N et al. (2005). Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial–mesenchymal transition. J Cell Biol 171: 1023–1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji X, Woodard AS, Rimm DL, Fearon ER . (1997). Transcriptional defects underlie loss of E-cadherin expression in breast cancer. Cell Growth Differ 8: 773–778.

    CAS  PubMed  Google Scholar 

  • Kim D, Kim S, Koh H, Yoon SO, Chung AS, Cho KS et al. (2001). Akt/PKB promotes cancer cell invasion via increased motility and metalloproteinase production. FASEB J 15: 1953–1962.

    Article  CAS  PubMed  Google Scholar 

  • Larue L, Bellacosa A . (2005). Epithelial–mesenchymal transition in development and cancer: role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene 24: 7443–7454.

    Article  CAS  PubMed  Google Scholar 

  • Misra J, Schmitt W, Hwang D, Hsiao LL, Gullans S, Stephanopoulos G et al. (2002). Interactive exploration of microarray gene expression patterns in a reduced dimensional space. Genome Res 12: 1112–1120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morali OG, Delmas V, Moore R, Jeanney C, Thiery JP, Larue L . (2001). IGF-II induces rapid beta-catenin relocation to the nucleus during epithelium to mesenchyme transition. Oncogene 20: 4942–4950.

    Article  CAS  PubMed  Google Scholar 

  • Morali O, Savagner P, Larue L . (2004). Epithelium–mesenchymal transitions are crucial morphogenetic events occurring during early development. In: Savagner P (ed). Rise and Fall of Epithelial Phenotype. Landes Biosciences Publisher: Georgetown, TX, USA, pp 12–28.

    Google Scholar 

  • Nelles L, Van de Putte T, van Grunsven L, Huylebroeck D, Verschueren K . (2003). Organization of the mouse Zfhx1b gene encoding the two-handed zinc finger repressor Smad-interacting protein-1. Genomics 82: 460–469.

    Article  CAS  PubMed  Google Scholar 

  • Nieto MA, Bennett MF, Sargent MG, Wilkinson DG . (1992). Cloning and developmental expression of Sna, a murine homologue of the Drosophila Snail gene. Development 116: 227–237.

    CAS  PubMed  Google Scholar 

  • Orlowski RZ, Baldwin Jr AS . (2002). NF-kappaB as a therapeutic target in cancer. Trends Mol Med 8: 385–389.

    Article  CAS  PubMed  Google Scholar 

  • Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB . (1999). NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401: 82–85.

    Article  CAS  PubMed  Google Scholar 

  • Park BK, Zeng X, Glazer RI . (2001). Akt1 induces extracellular matrix invasion and matrix metalloproteinase-2 activity in mouse mammary epithelial cells. Cancer Res 61: 7647–7653.

    CAS  PubMed  Google Scholar 

  • Peinado H, Portillo F, Cano A . (2004). Transcriptional regulation of cadherins during development and carcinogenesis. Int J Dev Biol 48: 365–375.

    Article  CAS  PubMed  Google Scholar 

  • Perez-Moreno MA, Locascio A, Rodrigo I, Dhondt G, Portillo F, Nieto MA et al. (2001). A new role for E12/E47 in the repression of E-cadherin expression and epithelial–mesenchymal transitions. J Biol Chem 276: 27424–27431.

    Article  CAS  PubMed  Google Scholar 

  • Remacle JE, Kraft H, Lerchner W, Wuytens G, Collart C, Verschueren K et al. (1999). New mode of DNA binding of multi-zinc finger transcription factors: deltaEF1 family members bind with two hands to two target sites. EMBO J 18: 5073–5084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Risinger JI, Berchuck A, Kohler MF, Boyd J . (1994). Mutations of the E-cadherin gene in human gynecologic cancers. Nat Genet 7: 98–102.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigo I, Cato AC, Cano A . (1999). Regulation of E-cadherin gene expression during tumor progression: the role of a new Ets-binding site and the E-pal element. Exp Cell Res 248: 358–371.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez MS, Wright J, Thompson J, Thomas D, Baleux F, Virelizier JL et al. (1996). Identification of lysine residues required for signal-induced ubiquitination and degradation of I kappa B-alpha in vivo. Oncogene 12: 2425–2435.

    CAS  PubMed  Google Scholar 

  • Schmid JA, Birbach A, Hofer-Warbinek R, Pengg M, Burner U, Furtmuller PG et al. (2000). Dynamics of NF kappa B and Ikappa Balpha studied with green fluorescent protein (GFP) fusion proteins. Investigation of GFP-p65 binding to DNa by fluorescence resonance energy transfer. J Biol Chem 275: 17035–17042.

    Article  CAS  PubMed  Google Scholar 

  • Stoyanova R, Clapper ML, Bellacosa A, Henske EP, Testa JR, Ross EA et al. (2004a). Altered gene expression in phenotypically normal renal cells from carriers of tumor suppressor gene mutations. Cancer Biol Ther 3: 1313–1321.

    Article  CAS  PubMed  Google Scholar 

  • Stoyanova R, Upson JJ, Patriotis C, Ross EA, Henske EP, Datta K et al. (2004b). Use of RNA amplification in the optimal characterization of global gene expression using cDNA microarrays. J Cell Physiol 201: 359–365.

    Article  CAS  PubMed  Google Scholar 

  • Tamura G, Yin J, Wang S, Fleisher AS, Zou T, Abraham JM et al. (2000). E-cadherin gene promoter hypermethylation in primary human gastric carcinomas. J Natl Cancer Inst 92: 569–573.

    Article  CAS  PubMed  Google Scholar 

  • Tang ED, Nunez G, Barr FG, Guan KL . (1999). Negative regulation of the forkhead transcription factor FKHR by Akt. J Biol Chem 274: 16741–16746.

    Article  CAS  PubMed  Google Scholar 

  • Testa JR, Bellacosa A . (2001). AKT plays a central role in tumorigenesis. Proc Natl Acad Sci USA 98: 10983–10985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thant AA, Nawa A, Kikkawa F, Ichigotani Y, Zhang Y, Sein TT et al. (2000). Fibronectin activates matrix metalloproteinase-9 secretion via the MEK1-MAPK and the PI3K-Akt pathways in ovarian cancer cells. Clin Exp Metastasis 18: 423–428.

    Article  CAS  PubMed  Google Scholar 

  • Thiery JP . (2002). Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer 2: 442–454.

    Article  CAS  PubMed  Google Scholar 

  • Van de Putte T, Maruhashi M, Francis A, Nelles L, Kondoh H, Huylebroeck D et al. (2003). Mice lacking ZFHX1B, the gene that codes for Smad-interacting protein-1, reveal a role for multiple neural crest cell defects in the etiology of Hirschsprung disease-mental retardation syndrome. Am J Hum Genet 72: 465–470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viatour P, Merville MP, Bours V, Chariot A . (2005). Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends Biochem Sci 30: 43–52.

    Article  CAS  PubMed  Google Scholar 

  • Vleminckx K, Vakaet Jr L, Mareel M, Fiers W, van Roy F . (1991). Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell 66: 107–119.

    Article  CAS  PubMed  Google Scholar 

  • Wang HD, Ren J, Zhang L . (2004). CDH1 germline mutation in hereditary gastric carcinoma. World J Gastroenterol 10: 3088–3093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu JT, Kral JG . (2005). The NF-kappaB/IkappaB signaling system: a molecular target in breast cancer therapy. J Surg Res 123: 158–169.

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C et al. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117: 927–939.

    Article  CAS  PubMed  Google Scholar 

  • Yoshiura K, Kanai Y, Ochiai A, Shimoyama Y, Sugimura T, Hirohashi S . (1995). Silencing of the E-cadherin invasion-suppressor gene by CpG methylation in human carcinomas. Proc Natl Acad Sci USA 92: 7416–7419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M et al. (2004). Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial–mesenchymal transition. Nat Cell Biol 6: 931–940.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to John Burch (FCCC, Philadelphia, USA) and Danny Huylebroeck (University of Leuven, Laboratory of Molecular Biology (Celgen) for their constructive comments. We thank Manijeh Pasdar (U. Alberta, Edmonton, Canada) for the desmoplakin antibody, Robert Weil (Institut Pasteur) for YFP-p65 and all members of the GDM lab. SJ was supported by Ministère de la Recherche, Ligue Contre le Cancer (Comité de l'Essonne) and Société Française du Cancer. IP was supported by an Institut Curie fellowship and ARC. LL holds an INSERM position. This work was supported by the Ligue Nationale Contre le Cancer (Equipe Labellisée).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Larue.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Julien, S., Puig, I., Caretti, E. et al. Activation of NF-κB by Akt upregulates Snail expression and induces epithelium mesenchyme transition. Oncogene 26, 7445–7456 (2007). https://doi.org/10.1038/sj.onc.1210546

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210546

Keywords

This article is cited by

Search

Quick links