Exp Clin Endocrinol Diabetes 2007; 115(8): 477-482
DOI: 10.1055/s-2007-980179
Review

© J. A. Barth Verlag in Georg Thieme Verlag KG · Stuttgart · New York

The Clinical Relevance of LDL Size and Subclasses Modulation in Patients with Type-2 Diabetes

M. Rizzo 1 , G. B. Rini 1 , K. Berneis 2
  • 1Department of Clinical Medicine and Emerging Diseases, University of Palermo, Italy
  • 2Department of Endocrinology, Diabetes & Clinical Nutrition, University Hospital Zurich, Switzerland
Further Information

Publication History

received 26.03.2007 first decision 25.04.2007

accepted 25.04.2007

Publication Date:
12 September 2007 (online)

Abstract

Increasing evidence suggest that the “quality” rather than only the “quantity” of low density lipoproteins (LDL) exerts a great influence on the cardiovascular risk. Hypertriglyceridemia, low HDL-cholesterol and increased levels of small dense LDL characterise diabetic dyslipidemia. In subjects with type-2 diabetes LDL size seems also to represent a good marker of clinical apparent and non-apparent atherosclerosis. Recently, the Coordinating Committee of the National Cholesterol Education Program stated that high-risk patients may benefit of stronger therapeutical approaches, a category of subjects that include those with type-2 diabetes. Screening for the presence of small, dense LDL may potentially identify those with even higher risk and may contribute in directing specific treatments in order to prevent new cardiovascular events. Hypolipidemic treatments are able to favourably modulate LDL size and subclasses in patients at higher cardiovascular risk. Regarding subjects with type-2 diabetes this seems particularly true for fibrates and less for statins. Analysis of all published studies revealed that atorvastatin represents the most effective agent among statins, while fenofibrate, bezafibrate and gemfibrozil are all very beneficial in modifying LDL size and subclasses towards less atherogenic particles. Nicotinic acid has been found also effective but the extended-release form should be preferred for the reduced intolerance, while fish oils have been shown to be less beneficial. Promising data are also available with the use of ezetimibe, a cholesterol absorption inhibitor.

References

  • 1 Krauss RM. Dietary and genetic probes of atherogenic dyslipidemia.  Arterioscler Thromb Vasc Biol. 2005;  25 2265-2272
  • 2 Berneis KK, Krauss RM. Metabolic origins and clinical significance of LDL heterogeneity.  J Lipid Res. 2002;  43 1363-1379
  • 3 Rizzo M, Berneis K. Small, dense low-density-lipoproteins and the metabolic syndrome.  Diabetes Metab Res Rev. 2007;  23 14-20
  • 4 U.K. Prospective Diabetes Study . Plasma lipids and lipoproteins at diagnosis of NIDDM by age and sex.  Diabetes Care. 1997;  20 1683-1687
  • 5 Friedlander Y, Kidron M, Caslake M, Lamb T, MacConnell M, Bar-On H. Low density lipoprotein particle size and risk factors of insulin resistance syndrome.  Atherosclerosis. 2000;  148 141-149
  • 6 Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith Jr SC, Spertus JA, Costa F. American Heart Association; National Heart, Lung, and Blood Institute . Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement.  Circulation. 2005;  112 2735-2752
  • 7 Rizzo M, Berneis K. Low-density-lipoproteins size and cardiovascular risk assessment QJM.  Int J Med. 2006;  99 1-14
  • 8 National Cholesterol Education Program (NCEP). Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) . Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report.  Circulation. 2002;  106 3143-3421 , 23
  • 9 Austin MA, Mykkanen L, Kuusisto J. et al . Prospective study of small LDLs as a risk factor for non-insulin dependent diabetes mellitus in elderly men and women.  Circulation. 1995;  92 1770-1778
  • 10 Reaven GM, Chen YD, Jeppesen J, Maheux P, Krauss RM. Insulin resistance and hyperinsulinemia in individuals with small, dense low density lipoprotein particles.  J Clin Invest. 1993;  92 141-146
  • 11 Feingold KR, Grunfeld C, Pang M, Doerrler W, Krauss RM. LDL subclass phenotypes and triglyceride metabolism in non-insulin-dependent diabetes.  Arterioscler Thromb. 1992;  12 1496-1502
  • 12 Selby JV, Austin MA, Newman B. et al . LDL subclass phenotypes and the insulin resistance syndrome in women.  Circulation. 1993;  88 381-387
  • 13 Berneis K, Jeanneret C, Muser J, Felix B, Miserez AR. Low-density lipoprotein size and subclasses are markers of clinically apparent and non-apparent atherosclerosis in type 2 diabetes.  Metabolism. 2005;  54 227-234
  • 14 Salonen JT, Salonen R. Ultrasound B-mode imaging in observational studies of atherosclerotic progression.  Circulation. 1993;  87 II56-II65
  • 15 Rizzo M, Berneis K. The clinical relevance of low-density-lipoproteins size modulation by statins.  Cardiovasc Drugs Ther. 2006;  20 205-217
  • 16 Gazi IF, Tsimihodimos V, Tselepis AD, Elisaf M, Mikhailidis DP. Clinical importance and therapeutic modulation of small dense low-density lipoprotein particles.  Expert Opin Biol Ther. 2007;  7 53-72
  • 17 Winkler K, Abletshauser C, Hoffmann MM, Friedrich I, Baumstark MW, Wieland H, Marz W. Effect of fluvastatin slow-release on low density lipoprotein (LDL) subfractions in patients with type 2 diabetes mellitus: baseline LDL profile determines specific mode of action.  J Clin Endocrinol Metab. 2002;  87 5485-5490
  • 18 Kazama H, Usui S, Okazaki M, Hosoi T, Ito H, Orimo H. Effects of bezafibrate and pravastatin on remnant-like lipoprotein particles and lipoprotein subclasses in type 2 diabetes.  Diabetes Res Clin Pract. 2003;  59 181-189
  • 19 Geiss HC, Schwandt P, Parhofer KG. Influence of simvastatin on LDL-subtypes in patients with heterozygous familial hypercholesterolemia and in patients with diabetes mellitus and mixed hyperlipoproteinemia.  Exp Clin Endocrinol Diabetes. 2002;  110 182-187
  • 20 Freed MI, Ratner R, Marcovina SM, Kreider MM, Biswas N, Cohen BR, Brunzell JD. Rosiglitazone Study 108 investigators . Effects of rosiglitazone alone and in combination with atorvastatin on the metabolic abnormalities in type 2 diabetes mellitus.  Am J Cardiol. 2002;  90 947-952
  • 21 Pontrelli L, Parris W, Adeli K, Cheung RC. Atorvastatin treatment beneficially alters the lipoprotein profile and increases low-density lipoprotein particle diameter in patients with combined dyslipidemia and impaired fasting glucose/type 2 diabetes.  Metabolism. 2002;  51 334-342
  • 22 Wagner AM, Jorba O, Bonet R, Ordonez-Llanos J, Perez A. Efficacy of atorvastatin and gemfibrozil, alone and in low dose combination, in the treatment of diabetic dyslipidemia.  J Clin Endocrinol Metab. 2003;  88 3212-3217
  • 23 Ikejiri A, Hirano T, Murayama S, Yoshino G, Gushiken N, Hyodo T, Taira T, Adachi M. Effects of atorvastatin on triglyceride-rich lipoproteins, low-density lipoprotein subclass, and C-reactive protein in hemodialysis patients.  Metabolism. 2004;  53 1113-1117
  • 24 Frost RJ, Otto C, Geiss HC, Schwandt P, Parhofer KG. Effects of atorvastatin versus fenofibrate on lipoprotein profiles, low-density lipoprotein subfraction distribution, and hemorheologic parameters in type 2 diabetes mellitus with mixed hyperlipoproteinemia.  Am J Cardiol. 2001;  87 44-48
  • 25 Geiss HC, Otto C, Schwandt P, Parhofer KG. Effect of atorvastatin on low-density lipoprotein subtypes in patients with different forms of hyperlipoproteinemia and control subjects.  Metabolism. 2001;  50 983-988
  • 26 Soedamah-Muthu SS, Colhoun HM, Thomason MJ, Betteridge DJ, Durrington PN, Hitman GA, Fuller JH, Julier K, Mackness MI, Neil HA. CARDS Investigators . The effect of atorvastatin on serum lipids, lipoproteins and NMR spectroscopy defined lipoprotein subclasses in type 2 diabetic patients with ischaemic heart disease.  Atherosclerosis. 2003;  167 243-255
  • 27 Lahdenpera S, Tilly-Kiesi M, Vuorinen-Markkola H, Kuusi T, Taskinen MR. Effects of gemfibrozil on low-density lipoprotein particle size, density distribution, and composition in patients with type II diabetes.  Diabetes Care. 1993;  16 584-592
  • 28 O'Neal DN, O'Brien RC, Timmins KL, Grieve GD, Lau KP, Nicholson GC, Kotowicz MA, Best JD. Gemfibrozil treatment increases low-density lipoprotein particle size in type 2 diabetes mellitus but does not alter in vitro oxidizability.  Diabet Med. 1998;  15 870-877
  • 29 Kondo A, Morita H, Nakamura H, Kotani K, Kobori K, Ito S, Manabe M, Saito K, Kanno T, Maekawa M. Influence of fibrate treatment on malondialdehyde-modified LDL concentration.  Clin Chim Acta. 2004;  339 97-103
  • 30 Hayashi K, Kurushima H, Kuga Y, Shingu T, Tanaka K, Yasunobu Y, Nomura K, Ohtani H, Hiraga T, Toyota Y, Katano T, Sakai-Ohta K, Kajiyama G. Comparison of the effect of bezafibrate on improvement of atherogenic lipoproteins in Japanese familial combined hyperlipidemic patients with or without impaired glucose tolerance.  Cardiovasc Drugs Ther. 1998;  12 3-12
  • 31 Feher MD, Caslake M, Foxton J, Cox A, Packard CJ. Atherogenic lipoprotein phenotype in type 2 diabetes: reversal with micronised fenofibrate.  Diabetes Metab Res Rev. 1999;  15 395-399
  • 32 Frost RJ, Otto C, Geiss HC, Schwandt P, Parhofer KG. Effects of atorvastatin versus fenofibrate on lipoprotein profiles, low-density lipoprotein subfraction distribution, and hemorheologic parameters in type 2 diabetes mellitus with mixed hyperlipoproteinemia.  Am J Cardiol. 2001;  87 44-48
  • 33 Tan CE, Chew LS, Tai ES, Chio LF, Lim HS, Loh LM, Shepherd J. Benefits of micronised fenofibrate in type 2 diabetes mellitus subjects with good glycemic control.  Atherosclerosis. 2001;  154 469-474
  • 34 Vakkilainen J, Steiner G, Ansquer JC, Aubin F, Rattier S, Foucher C, Hamsten A, Taskinen MR. DAIS Group . Relationships between low-density lipoprotein particle size, plasma lipoproteins, and progression of coronary artery disease: the Diabetes Atherosclerosis Intervention Study (DAIS).  Circulation. 2003;  107 1733-1737
  • 35 Farnier M, Freeman MW, Macdonell G, Perevozskaya I, Davies MJ, Mitchel YB, Gumbiner B. the Ezetimibe Study Group . Efficacy and safety of the coadministration of ezetimibe with fenofibrate in patients with mixed hyperlipidaemia.  Eur Heart J. 2005;  26 897-905
  • 36 Gardner SF, Marx MA, White LM, Granberry MC, Skelton DR, Fonseca VA. Combination of low dose niacin and pravastatin improves the lipid profile in diabetic patients without compromising glycemic control.  Ann Pharmacother. 1997;  31 677-682
  • 37 Grundy SM, Vega GL, MacGovern ME, Tulloch BR, Kendall DM, Fitz-Patrick D, Ganda OP, Rosenson RS, Buse JB, Robertson DD, Sheehan JP. Diabetes Multicenter Research Group . Efficacy, safety, and tolerability of once-daily niacin for the treatment of dyslipidemia associated with type 2 diabetes: results of the assessment of diabetes control and evaluation of the efficacy of niaspan trial.  Arch Intern Med. 2002;  162 1568-1576
  • 38 Superko HR, MacGovern ME, Raul E, Garrett B. Differential effect of two nicotinic acid preparations on low density lipoprotein subclass distribution in patients classified as low density lipoprotein pattern A, B, or I.  Am J Card. 2004;  94 588-594
  • 39 Pan J, Lin M, Kesala RL, Van J, Charles MA. Niacin treatment of the atherogenic lipid profile and Lp(a) in diabetes.  Diabetes Obes Metab. 2002;  4 255-261
  • 40 Pan J, Van JT, Chan E, Kesala RL, Lin M, Charles MA. Extended-release niacin treatment of the atherogenic lipid profile and lipoprotein(a) in diabetes.  Metabolism. 2002;  51 1120-1127
  • 41 Harris WS. n-3 fatty acids and serum lipoproteins: human studies.  Am J Clin Nutr. 1997;  65 1645S-1654S
  • 42 Minihane AM, Khan S, Leigh-Firbank EC, Talmud P, Wright JW, Murphy MC, Griffin BA, Williams CM. ApoE polymorphism and fish oil supplementation in subjects with an atherogenic lipoprotein phenotype.  Arterioscler Thromb Vasc Biol. 2000;  20 1990-1997
  • 43 Rizzo M, Berneis K. Lipid triad or atherogenic lipoprotein phenotype: a role in cardiovascular prevention?.  J Ather Thromb. 2005;  12 237-239
  • 44 Patti L, Maffettone A, Iovine C, Marino LD, Annuzzi G, Riccardi G, Rivellese AA. Long-term effects of fish oil on lipoprotein subfractions and low density lipoprotein size in non-insulin-dependent diabetic patients with hypertriglyceridemia.  Atherosclerosis. 1999;  146 361-367
  • 45 Petersen M, Pedersen H, Major-Pedersen A, Jensen T, Marckmann P. Effect of fish oil versus corn oil supplementation on LDL and HDL subclasses in type 2 diabetic patients.  Diabetes Care. 2002;  25 1704-1708
  • 46 Mostad IL, Bjerve KS, Lydersen S, Grill V. Effects of marine n-3 fatty acid supplementation on lipoprotein subclasses measured by nuclear magnetic resonance in subjects with type II diabetes.  Eur J Clin Nutr. 2007;  , [Epub ahead of print]
  • 47 Woodman RJ, Mori TA, Burke V, Puddey IB, Watts GF, Best JD, Beilin LJ. Docosahexaenoic acid but not eicosapentaenoic acid increases LDL particle size in treated hypertensive type 2 diabetic patients.  Diabetes Care. 2003;  26 253
  • 48 Krauss RM. Lipids and lipoproteins in patients with type 2 diabetes.  Diabetes Care. 2004;  27 1496-1504
  • 49 Garvey WT, Kwon S, Zheng D, Shaughnessy S, Wallace P, Hutto A, Pugh K, Jenkins AJ, Klein RL, Liao Y. Effects of insulin resistance and type 2 diabetes on lipoprotein subclass particle size and concentration determined by nuclear magnetic resonance.  Diabetes. 2003;  52 453-462
  • 50 Karpe F. Postprandial lipoprotein metabolism and atherosclerosis.  J Intern Med. 1999;  246 341-355
  • 51 Mero N, Syvanne M, Eliasson B, Smith U, Taskinen MR. Postprandial elevation of ApoB-48-containing triglyceride-rich particles and retinyl esters in normolipemic males who smoke.  Arterioscler Thromb Vasc Biol. 1997;  17 2096-2102
  • 52 Tan KC, Cooper MB, Ling KL, Griffin BA, Freeman DJ, Packard CJ. et al . Fasting and postprandial determinants for the occurrence of small dense LDL species in non-insulin-dependent diabetic patients with and without hypertriglyceridaemia: the involvement of insulin, insulin precursor species and insulin resistance.  Atherosclerosis. 1995;  113 273-287
  • 53 Taira K, Hikita M, Kobayashi J, Bujo H, Takahashi K, Murano S. et al . Delayed post-prandial lipid metabolism in subjects with intraabdominal visceral fat accumulation.  Eur J Clin Invest. 1999;  29 301-308
  • 54 Okumura K, Matsui H, Kawakami K, Morishima I, Numaguchi Y, Murase K. et al . Modulation of LDL particle size after an oral glucose load is associated with insulin levels.  Clin Chim Acta. 1998;  276 143-155
  • 55 Noto D, Rizzo M, Barbagallo CM, Cefalu' AB, Lo Verde A, Fayer F, Notarbartolo A, Averna MR. Low-density lipoproteins generated during an oral fat load in mild hypertriglyceridemic and healthy subjects are smaller, denser, and have an increased low-density lipoprotein receptor binding affinity.  Metabolism. 2006;  55 1308-1316
  • 56 Superko HR, Berneis KK, Williams PT, Rizzo M, Wood PD. Differential effect of gemfibrozil in normolipemic subjects with predominantly dense or buoyant low density lipoprotein particles and the effect on postprandial lipemia and Lp(a).  Am J Cardiology. 2005;  96 1266-1272
  • 57 Grundy SM, Cleeman JI, Merz CNB, Brewer HB, Clark LT, Hunninghake DB. et al . Implications of Recent Clinical Trials for the National Cholesterol Education Program Adult Treatment Panel III Guidelines.  Circulation. 2004;  110 227-239

Correspondence

M. RizzoMD, PhD 

Dipartimento di Medicina Clinica e delle Patologie Emergenti

Universita' di Palermo

Via del Vespro, 141

90127 Palermo

Italy

Phone: +39/091/655 29 45

Fax: +39/091/655 29 82

Email: mrizzo@unipa.it

    >