Strand-specific fluorescence in situ hybridization: the CO-FISH family

Cytogenet Genome Res. 2004;107(1-2):14-7. doi: 10.1159/000079565.

Abstract

The ability to prepare single-stranded chromosomal target DNA allows innovative uses of FISH technology for studies of chromosome organization. Standard FISH methodologies require functionally single-stranded DNAs in order to facilitate hybridization between the probe and the complementary chromosomal target sequence. This usually involves denaturation of double-stranded probes to induce temporary separation of the DNA strands. Strand-specific FISH (CO-FISH; Chromosome Orientation-FISH) involves selective removal of newly replicated strands from DNA of metaphase chromosomes which results in single-stranded target DNA. When single-stranded probes are then hybridized to such targets, the resulting strand-specific hybridization is capable of revealing a level of information previously unattainable at the cytogenetic level. Mammalian telomeric DNA consists of tandem repeats of the (TTAGGG) sequence, oriented 5'-->3' towards the termini of all vertebrate chromosomes. Based on this conserved structural organization, CO-FISH with a telomere probe reveals the absolute 5'-->3' orientation of DNA sequences with respect to the pter-->qter direction of chromosomes. Development and various applications of CO-FISH will be discussed: detection of cryptic inversions, discrimination between telomeres produced by leading- versus lagging-strand synthesis, and replication timing of mammalian telomeres.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Humans
  • In Situ Hybridization, Fluorescence / methods*
  • In Situ Hybridization, Fluorescence / trends